

# **NCD-SWEET**

# Brief user guideline

This is a guide on the most common macros used while performing experiments at NCD-SWEET beamline. The described macros are accessible via:

- Command Line Interface (CLI) by using Spock
- Graphical User Interface (GUI) by using the sequencer of bl11ExpGui.

# Before starting, some warnings and advices:

- Think before. Safety first.
- Before moving motors, ensure there will be NO collisions.
- All macros should be internally documented. To access the documentation, type in *Spock* the macro name followed by '?'. Example: 'wm?'
- The *floor coordinator* is your first point of contact during non-working hours when you have technical issues with the beamline and/or issues with the laboratories.

And in case of doubt: Ask your local contact!

Good luck with your experiments 🙂

Internal Emergency number 4499 Floor coordinator numbers:

(+34 93.592) **4401** 

(+34 93.592) **5401** 

(+34) **608.018.721** 



# **PRACTICAL INFORMATION**



**G** Beamline website and general information

You will find detailed and updated information at the NCD-SWEET beamline:

https://www.albasynchrotron.es/en/beamlines/bl11-ncd

- User and password
- Your user name (proposal account) is composed by "u" + your proposal number. *e.g.: "u2020093939"*
- Your password has to be changed at the beginning of the experiment by visiting: <u>https://albapassword.cells.es/</u>

\* Remember your user and password, since it will be needed for login in the beamline computer and remotely access to your data.

#### External data access:

All beamline users can download their experiments data connecting via SFTP:

- SFTP configuration
  - Host: userdata.cells.es
  - Port: **443**
  - Username: <proposal account>
  - Password: <proposal password>
  - Directory: /DATA

\* Common programs for SFTP connection are:

- Windows: WinSCP
- Linux clients: KDE/Dolphin, Ubuntu/Nautilus, Filezilla, command-line...
- Mac OS X clients: Cyberduck

Visit the following link for more information:

https://intranet.cells.es/Intranet/Help/BeamlinesHelp/sftp/index\_html

Note: Currently ALBA guarantees data storage up to 6 months after your experiment terminates. We are currently working to extend this data storage time in the future.



# **BEAMLINE COMPUTER DESKTOP**



To access the CLI, the BL11ExpGui and the most common programs, different icons can be found on the computer desktop:

4 Terminal & Spock

- Spock is the CLI for sardana based on ipython
- Open a terminal window and type:
  - spock 리

**4** Device Restarter: beamline status

Graphical interface for device status and restart

Pilatus (SAXS) and Rayonix (WAXS) detectors image visualizers

- Offline image visualizer
- Sweet program for aligning
- Interacts with: sascan, sdscan, CScan2 macros
- Options: Go maxval | Go minval | Go pos | Go edge

## Linkam frames calculator

 To calculate the number of frames, acquisition time, etc. when running linkam temperature profiles

# Beamline experimental hutch camera: ipcam39

- Via Firefox for setting up the camera. Once the camera is set, CLOSE Firefox or it will freeze the computer.
- Via a visualizer

There are other cameras that can be open using the terminal. For that you can type in a terminal tab: "**ipcam07**", "**ipcam22**", "**ipcam39**"



Terminal.desktop





desktop

desktop















# **BEAMLINE USER MACROS**

A short guide



# DATA MANAGEMENT

## 4 newSample newSample <sample\_name>

Function:

- Define a new folder in your main experiment directory.
- Define a new prefix for the detector filenames that can be overwriten by the macro newPrefix
- Subfolders can be defined by extending the path<sup>2</sup>

If the folder already contains detector data, an error message will be displayed and the new folder will NOT be created. [Data management rules]

#### Example:

- newSample sample0
- newSample gisaxs/sample1

Define the new folder Define the subfolder

| <b>hewPrefix</b> newPrefix <sample pref<="" th=""></sample> |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

## Function:

- It overwrites the detector filenames prefix defined by the macro newSample. The folder is kept unchanged.

#### Example:

- newPrefix sample2



# **BEAMLINE**

| 4 | shopen                                                                        | shopen                                               |
|---|-------------------------------------------------------------------------------|------------------------------------------------------|
|   | <u>Function:</u><br>- Open the safety :<br><u>Example:</u><br>- <u>shopen</u> | shutter (between the optical and experimental hutch) |
| 4 | shclose shclo                                                                 | se                                                   |
|   | <u>Function:</u><br>- Close the safety<br><u>Example:</u><br>- shclose        | shutter (between the optical and experimental hutch) |
| 4 | fsopen fsope                                                                  | en                                                   |
|   | <u>Function:</u><br>- Open fast shutte                                        | -                                                    |
| 4 | fsclose fsclos                                                                | se                                                   |
|   | <u>Function:</u><br>- Close fast shutte                                       | r                                                    |
| 4 | pwopen                                                                        | pwopen                                               |
|   | <u>Function:</u><br>- Open the flight tu<br><u>Example:</u><br>- pwopen       | be protection window                                 |
| 4 | pwclose                                                                       | pwclose                                              |
| L | -<br><u>Function:</u><br>- Close the flight tu                                | ibe protection window                                |

# Example:

- pwclose



# DATA ACQUISITION

| <b>snap</b> snap <acq_time> <n°_frames> <latency></latency></n°_frames></acq_time> |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|

Function:

- Macro to take images and save them in the defined directory by "newSample"
- Default values: 1s, 1 image, minimum possible latency

#### Example:

| snap           | Take 1 image of 1s exposure with minimum latency             |
|----------------|--------------------------------------------------------------|
| snap 0.1 3 0.5 | Take 3 images of 0.1 s with 0.5 s latency between the images |

snapascan snapascan <motor> <start\_position> <end\_position> <nº intervals><acq time>

#### Function:

- Scan in absolute positions while saving images in the defined path by "newSample"
- The units are mm for length or degree for angle

#### Example:

- snapascan sx -1 1 10 0.1

snapdscan snapdscan <motor> <start\_position> <end\_position> <n° intervals><acq time>

#### Function:

- Scan in relative positions to the current position while saving images in the defined path by "newSample"
- The units are mm for length or degree for angle

#### Example:

- snapdscan sx -1 1 10 0.1



| 🕹 snapmesh | snapmesh <motor1> &lt; start_position1&gt; &lt; end_position1&gt; <nº_intervals1></nº_intervals1></motor1> |
|------------|------------------------------------------------------------------------------------------------------------|
|            | <motor2> &lt; start_position2&gt; &lt; end_position2&gt; <nº_intervals2></nº_intervals2></motor2>          |
|            | <acq_time> <opt: bidirectional=""></opt:></acq_time>                                                       |

### Function:

- mesh scan of two motors in absolute positions while saving images in the defined path by "newSample"

#### Example:

snapmesh sx -70 70 100 sz 45 75 200 0.1

snapdmesh snapdmesh <motor1> < start\_rel1> < end\_rel1> <nº\_intervals1> <motor2> < start\_rel2> < end\_rel2> <nº\_intervals2> <acq\_time> <opt: bidirectional>

#### Function:

- mesh scan of two motors in relative positions while saving images

#### Example:

- snapdmesh sx -1 1 10 sz -2 2 20 0.1

snapstepscan snapstep <motor1> < [positions]> <acq\_time>

### Function:

- Macro that runs a scan at different motor positions defined in a list
- If adapt\_prefix is True (default: False) the motor position will be included in the filename

#### Example:

- snapstep spitch [0 0.05 0.1 0.15 0.2] 0.5

snapstep2scan snapstep2 <motor1> < [positions]> <motor2> < [positions2] <acq\_time>

#### Function:

- Macro that runs a scan at different motor positions defined in a list
- Motor2 iters for each Motor1 position

#### Example:

snapstep2 sx [-10 0 10] spitch [0 0.05 0.1 0.15 0.2] 0.5



# **ALIGNMENT**



#### Function:

- Move the defined motor <u>to</u> the absolute target position

#### Example:

- mv sx 5.4

#### mvr <motor> <step>

#### Function:

- Increment the defined motor by the given value

#### Example:

- mvr spitch 0.3
- mvr sx -0.5



sascan <motor> <start\_rel> <end\_rel><nº\_intervals><acq\_time>

#### Function:

- Scan with absolute motor positions (ascan) interacting with "sweet" program.
- Images will NOT be saved

#### Example:

- sascan sx 5 7 20 0.1

sdscan <motor><start rel><end rel><n° intervals><acq time>

#### Function:

- Scan with relative motor positions (dscan) interacting with "sweet" program.
- Images will NOT be saved

#### Example:

- sdscan sx -1 1 20 0.1

**4 go** go <option>

## Function:

Interact with <u>SWEET</u> program for scan. There are different options:
"maxval": data max, "minval": data min, "pos": fit position, "edge": derivative position

#### Example:

- go pos

| 🖊 setm setm <motor></motor> |  |
|-----------------------------|--|
|-----------------------------|--|

#### Function:

- Redefine current motor position to the desired value

#### Example:

- setm spitch 0

#### resetm resetm <motor >

#### Function:

- Set the motor offset to 0

Example:

resetm spitch



#### align\_sample align\_sample <full\_beam\_diode\_current>

#### Function:

- Macro that aligns a GISAXS / GIWAXS sample, i.e. sz and spitch. It finds the sz threshold by looking at the diode counts while moving the sz motor and then it does a "sdscan spitch -0.3 0.3 30 0.1".
- "SWEET" program must be running
- Input the current on the photodiode with full beam OPTIONAL after the first use
- WARNING: not recommended for substrates that can partially transmit the beam. Do not leave this macro working without surveillance. For the first sample, do a manual alignment.

#### Example:

- align\_sample 5E-5

## **diode\_value** diode\_value

#### Function:

- Macro to get the full diode counts, keeping in memory for its use with align\_sample macro.
- It will move sz -1 mm and put the spicth at 0, so, use it carefully

#### Example:

- diode\_value

| 🔺 alig | n_sweet | option | align | sweet | option | <option></option> |
|--------|---------|--------|-------|-------|--------|-------------------|
|--------|---------|--------|-------|-------|--------|-------------------|

#### Function:

- Macro to configure the autoalignment to follow the maxval or fitting pos of sweet program
- Options: "pos", "maxval"

#### Example:

- align\_sweet\_option maxval



## <u>LINKAM</u>

| 🔸 linkam_on 🛛 🛛 linkam on |  |
|---------------------------|--|
|---------------------------|--|

Function:

- Restarts the device server and enables the linkam experimental channels

| 🔸 linkam_off 🛛 🛛 linkam off |  |
|-----------------------------|--|
|-----------------------------|--|

#### Function:

- Disables the linkam experimental channels

| 4 | linkam | ramp | linkam | ramp | <temperature> <rate></rate></temperature> |  |
|---|--------|------|--------|------|-------------------------------------------|--|
|---|--------|------|--------|------|-------------------------------------------|--|

#### Function:

- Start linkam ramp while showing the progress. It waits for the target temperature to continue
- Temperature: °C
- Rate: °C/min

#### Example:

- linkam\_ramp 300 10

| 4 | linkam start | ramp | linkam | start | ramp | <tem< th=""><th>perature&gt;</th><th><rate></rate></th></tem<> | perature> | <rate></rate> |
|---|--------------|------|--------|-------|------|----------------------------------------------------------------|-----------|---------------|
|   |              |      |        |       |      |                                                                |           |               |

#### Function:

- Start linkam ramp in the background and continue
- Temperature: °C
- Rate: °C/min

#### Example:

- linkam\_start\_ramp 300 1000

#### linkam\_hold\_temperature linkam\_hold\_temperature

#### Function:

- Holds the current temperature

# **Iinkam\_stop** linkam\_stop

#### Function:

- Stop linkam temperature control



#### newLinkamProfile newLinkamProfile

#### Function:

\_

Create a new Linkam Profile file in the default experimental path

#### \*Explanation:

A new text file (*bl11\_linkam\_profile.txt*) will be created in the experiment path base. The file is used to create a linkam profile for a sample.

| **************************************                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ###### LINKAM TEMPERATURE PROFILE ######                                                                                                             |
| #######################################                                                                                                              |
| #                                                                                                                                                    |
| ### Instructions:                                                                                                                                    |
| #                                                                                                                                                    |
| # 1. Define the initial temperature. If empty, the current temperature will be set as initial temperature<br># 2. Fill the first line of the profile |
| # 3. Modify/Add new lines at your convenience always respecting the structure                                                                        |
| # 4. Run the profile using: "runLinkamProfile" macro. If path is defined, it will be used as profile file                                            |
| # * If no exposure time and latency are defined, the system will ramp without taking images                                                          |
| # * If latency is not defined, the minimum latency will be assumed                                                                                   |
| # * If two target temperatures are the same the rame will be skipped and it will directly run the dwell                                              |
| # * If a line is text it will be run as a marro                                                                                                      |
|                                                                                                                                                      |
| ### Initial temperature (degC) ###                                                                                                                   |
|                                                                                                                                                      |
|                                                                                                                                                      |
| ### PROFILE ###                                                                                                                                      |
| # Target(degC) Bamp(degC/min) Dwell(min) ExposureTime(s) LatencyTime(s) #                                                                            |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
| # Comment or add lines to be processed at the end of the profile                                                                                     |
| shclose                                                                                                                                              |
| linkam ramp 30 20                                                                                                                                    |
|                                                                                                                                                      |
|                                                                                                                                                      |

The file can be adapted to run the desired Linkam profile following the instructions.

#### **unLinkamProfile** runLinkamProfile <opt: file>

#### Function:

- Run the Linkam profile defined in the file
- If file is not defined, the default (Experimental\_path/bl11\_linkam\_profile.txt) will be used
- If file path or relative path to the experimental route is defined it will be used
- A .txt file containing the linkam profile will be saved in the same folder than the images

#### Example:

- runLinkamProfile
- runLinkamProfile /beamlines/bl11/.../myprofile.txt (full route)
- runLinkamProfile sample1/bl11\_linkam\_profile\_s1.txt (relative route to experiment path)



## USER MACROS

**hewUsermacro** newUserMacro

#### Function:

- Create a new User Macro file in the default experimental path

#### \*Explanation:

A new text file (*bl11\_user\_macros.txt*) will be created in the experiment path base. The file is used to create user defined macros that will be later loaded into the macro server



#### Function:

Reloads the user macro file if any change is detected for being used in Spock. Then, the user macros will be accessible via Spock.



# **DETECTOR MACROS**

roi\_set roi\_set <detector> <X1 > <Y1I> <X2I> <Y2>

Function:

- Set the detector ROI for the corresponding experimental channel
- If "full", the complete detector is considered
- If no input, the current ROI is printed
- Pixel (0,0) in the bottom left part of the image

## Example:

- set\_roi pilatusi 250 150 850 900
- pilatus\_set\_roi full