

RECENT UPGRADES OF THE SOLEIL RF SYSTEMS & CONTRIBUTIONS TO OTHER PROJECTS

ESLS-RF 2018

SOLEIL, 8-9 November 2018 Massamba DIOP On Behalf of the RF & LINAC Group

ORIGINAL BOOSTER RF SYSTEM

- \succ E_n : 100 MeV \rightarrow 2.75 GeV (rep. 3 Hz) ; V_{RF} : 0.2 \rightarrow 1 MV @ 352 MHz
- > 1 x 5-cell Cu cavity (CERN LEP) \rightarrow P_{tot} : 25 kW (P_{dis} : 20 kW, P_{beam} : 5 kW)
- > 1 x solid state amplifier (SSA) \rightarrow 35 kW CW @ 352 MHz (developed in house)

Cavity in the BO ring

BO RF room (amplifier with LLRF & control)

75 000 running hours over 12 years and only 4 short downtimes in operation (< 10⁻⁴ overall) of which a single *trip from the 35 kW SSA, due to a loose connection on a monitoring cable.* 7 module failure / year, without impact on the operation, thanks to the modularity and redundancy. M. Diop, ESLSRF18' – SOLEIL

Booster RF system was originally designed for standard operation

And new low-*a* operating mode suffers from a low injection efficiency (15-20%) due to the long BO bunches

- → Heavy safety radiation constraints
- \rightarrow Prevents more beam lines to join this operating mode
- <u>**2nd RF station**</u> needed to increase V_{RF} from 1 MV up to 3 MV
- > Shorter bunch length → SR injection efficiency improved by a factor of ~ 2 in low-a operation

Upgrade plan :

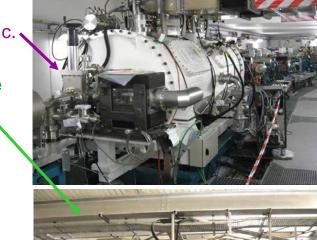
- > Former spare cavity installed in one straight section the Bo ring and powered with 60 kW ($V_{RF} = 1.8 \text{ MV}$)
- New 60 kW 352 MHz SSPA, identical to a standard tower of our SR amplifiers (10 dissipaters of 16 modules, built from 160 RF modules of 400 W with BLF574XR transistors and their dc-dc converters made available by the SR SSPA refurbishment)

SSPA and its associated LLRF & control (replica of the actual one) inside the Bo RF room Increase V_{RF} of the existing plant from 1 MV up to 1.2 MV \rightarrow P_{RF} ~ 30 kW (P_{beam} ~ 0)

- ✓ 60 kW CW SSPA completed (LDMOS BLF574XR) With modules got back from the SR SSA refurbishment
- ✓ CAV-2 pre-conditioned @ 1.8 MV in November 2017 in a dedicated test-stand powered with the new 60 kW SSPA
- ✓ New cavity and SSPA installed in winter 2017-2018
- ✓ Commissioning began in January 2018
- ✓ Standard operation (1 MV) with CAV-2 inst. of CAV-1 since Feb 2018
- ✓ CAV-2 conditioned @ 1.8 MV, P_{RF}= 60 kW CW in end-February 2018
- V_{RF} = 2.8 MV (2 cav.) successfully tested in low-α mode in June 2018 SR injection efficiency improved by a factor of 1.8 (35%)
- ✓ Beamline Radio Safety validation completed in September 2018
- ✓ 'Upgraded' Low- α operating mode proposed to users since October 2018 with V_{RF} = 3 MV (SR injection efficiency = 35%)

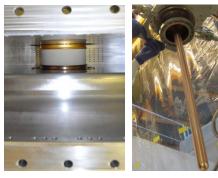
Additional benefits expected : power savings & redundancy in all the other operating modes

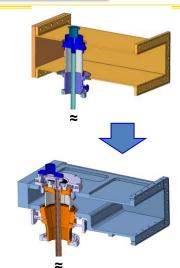
M. Diop, ESLSRF18' – SOLEIL



STORAGE RING RF SYSTEM

- > E_n = 2.75 GeV, ∆E = 1.2 MeV, I_b = 500 mA
 → P_{RF} = 600 kW & V_{RF} : 3 4 MV @ 352 MHz
- 2 cryomodules (CM), each containing a pair of single-cell s.c. cavities (Nb/Cu)
- Each of the 4 cavities is powered with a 180 kW solid state amplifier SSA)
- Both CM's are supplied with LHe (4.2 K) from a single cryogenic plant




INPUT POWER COUPLER (IPC) UPGRADE

- > Original SOLEIL IPC is a LEP2 type antenna \rightarrow 200 kW CW @ 352 MHz
- Problems of ceramic aging with LEP type IPC's at ESRF
- > 300 kW / cav \rightarrow SOLEIL can store 500 mA using a single CM \rightarrow redundancy

In 2011, collaboration agreement with CERN and ESRF \rightarrow develop a new 352 MHz IPC version, based on the LHC design (400 MHz), capable of handling *up to 300 kW*.

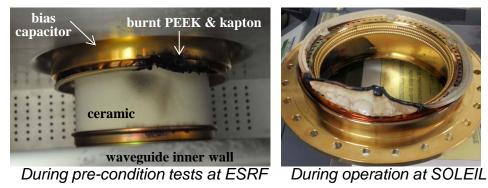
"Clean room " built

on top of the CM !

Six IPC's were built at CERN and then RF conditioned in the ESRF test-stand up to 300 kW in transmission and 200 kW in full reflection, using a copper cavity from CERN

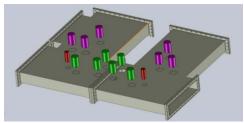
The IPC's were mounted on the CM's, *in situ*, without removing out of the ring, using a hood with laminar air flow, enclosed within a plastic tent and with slight N_2 gas overpressure inside the cavity

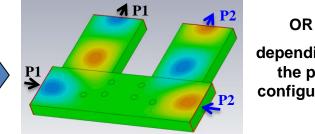
M. Diop, ESLSRF18' - SOLEIL



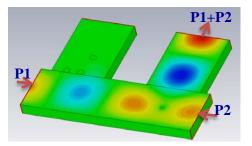
High voltage DC bias capacitor implemented to overcome multipacting issues at P~110 kW

> Initial dimensional error \rightarrow bias capacitor damage by overheating

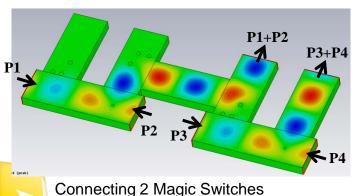

- Bias capacitor design corrected and re-implemented
- ➤ All 4 power couplers upgraded (200 kW → 300 kW) Last one in January 2017
- > All of them tested up to 270 kW CW with beam
 - Overheating issues on IPC-4 about to be solved thanks to a new bias capacitor design in operation since end-October 2018


TOWARD STORING 500 MA USING A SINGLE CM

Modification of the waveguide network to combine the power from two amplifiers into one cavity \rightarrow Possibility of storing the full beam current using a single CM


« Magic Switch »

SYNCHROTRON



depending on the post configuration

Masunat

Waveguide network layout to power one or the other CM with 300 kW / cav from the 4 SSPA's, combined by pairs

The 2 Magic Switches implemented and waveguide distribution completion planed for end-2018

Since 2013, on going refurbishment

- LR301 replacement by 6th generation <u>BLF574XR</u> (V_d = 50V instead of 30V with better performances)
 - More robust transistor and lower thermal stress \rightarrow longer lifetime \rightarrow less maintenance
 - \rightarrow failure of a single « new » transistor (~ 5 years of operation)
 - +7 dB transistor gain \rightarrow 160 modules & their dc PS are got back for the new BO SSA
 - P_{mod} increased : 315 W \rightarrow 450 W
 - Electrical power savings (efficiency : 50 % \rightarrow 60%) compensate the investment cost in < 3 years
- ➤ Modification of the 2.5 kW combiners (welded → screwed connections) to increase their power capability
- > 9 towers already refurbished (~ 2000 modules) → rate of 5 towers a year until 2020 with SOLEIL and external resources

STORAGE RING RF UPGRADE STATUS

Present : Now we can store 450 mA with 3 running SSPA's or 500 mA with 3 running cavities

In 2020 (end of refurbishment) : Possibility to store 500 mA with 3 running SSPA's / cavities or 450 mA with a single cryomodule, combining 2 SSPA's per cavity

CONTRIBUTIONS TO OTHER PROJECTS

M. Diop, ESLSRF18' - SOLEIL

500 MHz SSPA FOR THOMX⁽¹⁾ & SESAME⁽²⁾

⁽¹⁾ ThomX : Compton X-ray source under construction in Orsay, France
 ⁽²⁾ SESAME : Jordan Synchrotron light source

ThomX 50 kW SSPA (6 x 16 RF modules + 3 x 15 PS)

- Fully modular 50V power supplies 230 V_{ac} / 50 V_{dc} converters, in 2 kW units, 96% efficiency, with voltage remote control for efficiency optimization
- <u>Change from the tower to cabinet</u> assembly, better suited with the new power supplies.
- <u>Control upgrade</u> → stand-alone, self-protected and more modular (1 µcontroler per dissipater)

SESAME 80 kW SSPA (10 x 16 RF modules + 5 x 16 PS)

- ✓ For SESAME SR : 4 x 80 kW SSPA → 1st one built by SOLEIL as a demonstrator
 → 3 others on the same model by SigmaPhi Electronics (SPE), SOLEIL licensee since 2014
 <u>Status</u> : all in operation (first pair since end 2016 and 2nd one since May 2017)
- The ThomX 50 kW SSPA is also completed; it shall be soon installed and commissioned on site M. Diop, ESLSRF18' – SOLEIL

ADDITIONAL RF CONTRIBUTION TO THOMX

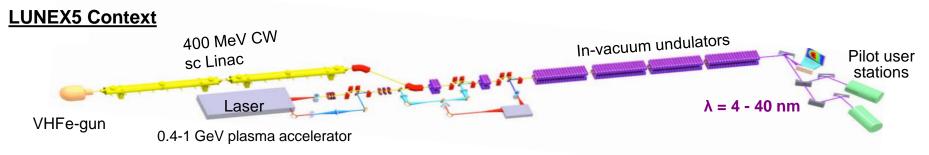
500 MHz SR RF system (cavity, LLRF, TFB)

ThomX ELETTRA type cavity

Cooling rack for HOM temperature tuning

FPGA - based TFB acting on a 4 plates stripline (x, y)

LLRF: conventional « slow » phase, amplitude and tuning loops + LFB = fast bunch phase feedback acting through the main cavity



> Installation & commissioning \rightarrow 2018 – 2019

M. Diop, ESLSRF18' – SOLEIL

LUCRECE/LUNEX5 PROJECT

Phase 1 : based on a 400 MeV CW sc Linac → explore advanced FEL techniques and applications
Phase 2 : additional laser wakefield (or plasma) accelerator will be assessed in view of FEL applications

Collaboration between SOLEIL and CEA-SACM for the 400 MeV conventional LINAC (phase 1)

- 2 x 200 MeV E-XFEL cryomodules of 12 m upgraded for CW operation
- One RF power amplifier for each cavity → 16 x 16 kW @ 1.3 GHz (not the most economical but the best way for achieving the required cavity field stability)
- LLRF system (0.01° in phase and 10⁻⁴ in amplitude) with its associated synchronization part

R&D on a VHF (176 MHz) photocathode e-gun for LUNEX5 \rightarrow 2 x 60 kW SSPA's To be launched soon

<u>OBJECTIVE</u> : First step in the RF R&D for LUNEX5 project, LUCRECE aims at developping a complete RF elementary cell (cavity, power source, LLRF and control) adapted to CW operation to be used for ERLs or fs multi-user FEL at high repetition rate

<u>DETAILS (2016-2021)</u> :

- A 1.3 GHz 20 kW CW SSPA, using GaN transistors [SOLEIL, SPE]
- A 1.3 GHz CW TESLA-shaped cavity [CEA, SOLEIL]
- A 20 kW CW input power coupler [CNRS-LAL, THALES, SOLEIL]
- A digital LLRF system (10⁻⁴, 0.01°), based on FPGA + CPLD + μC [SOLEIL, CNRS-LAL]
- Cryomodule mechanical studies [CEA, ALSYOM, SOLEIL]

Integrated tests at 2 K and 1.8 K in horizontal cryostat CryHoLab at CEA

Status :

- > Cavity about to be ordered
- > 400 W GaN SSA module shall be completed at end-2018
- > 20 kW FPC fabrication kick-off in 1st quarter 2019
- > LLRF components qualified \rightarrow R. Sreedharan's talk

M. Diop, ESLSRF18' - SOLEIL

RF timetable :

- 2019 : Preliminary RF system design \rightarrow **P. Marchand's talk**
- 2020 : CDR for DLSR (Phase 1)
- 2020-2022 : Main RF system design finalization
- 2022 : TDR
- 2022-2025 : Equipment procurement and machine reconstruction
- 2026 : Restart of user operation
- In a second step : VSR (Phase 2)?

□ RF Booster upgrade

2nd RF station implemented (5-cell Cu cavity + 60 kW SSPA) \rightarrow V_{RF} increased from 1 MV to 3 MV

SR injection efficiency improved in low-a operating mode from 19% to 35%

□ RF Storage Ring upgrade

- IPC : 200 kW → 300 kW
- Waveguide network modification (power combination through Magic Switch)
- 180 kW SSPA refurbishment (LR301 \rightarrow BLF574XR transistor + 2.5 kW combiner modification) Additional redundancy \rightarrow Store full I_{beam} with a single CM or 2 CMs with only 3 running amplifiers/cavities

□ 500 MHz SSPA for ThomX (50 kW) and SESAME (4 x 80 kW)

New SOLEIL homemade design that has benefited from upgrades developed after years of operation

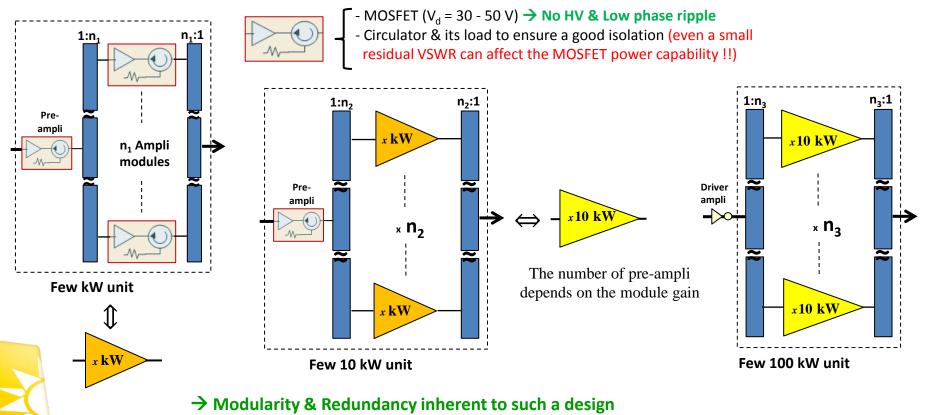
And for ThomX : Elettra type cavity refurbishment + LLRF and feedbacks (LFB + TFB)

1.3 GHz CW RF station for LUCRECE 20 kW SSPA (GaN transistors) + CW TESLA-shaped sc cavity + 20 kW IPC + LLRF

SOLEIL Upgrade towards DLSR

Preliminary RF design for CDR in 2020

M. Diop, ESLSRF18' – SOLEIL


BACKUP SLIDES

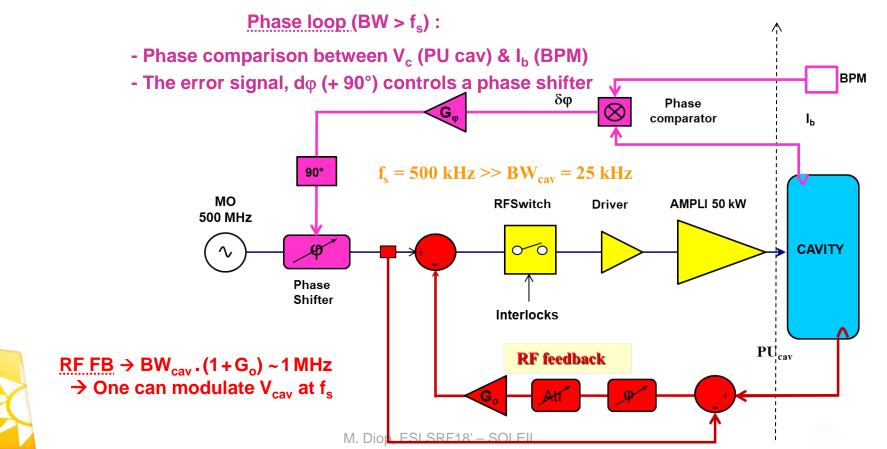
M. Diop, ESLSRF18' – SOLEIL

Combining in // a number of elementary amplifier modules (or pallets) of a few 100 W (up to ~ 1 kW)

M. Diop, ESLSRF18' - SOLEIL

New version

1) Standard screw-nut assembly replaced by « planetary roller » screw 2) « Harmonic drive » gear box replaced by « planetary » gear box


The four tuners have worked without any trouble for ~ 7 years. In 2016, we detected a change in behavior on one of them; when dismounting, we found that the cage of its screw was broken. > Replaced by a roller screw without prestressing (no surface treatment) The 3 other ones are still working well and no visible wear → preventive replacement planed

THOMX LONGITUDINAL FEEDBACK

21

LFB = direct RF FB + Phase loop

