

Present Status of RF System in KARA

Akira Mochihashi on behalf of IBPT and LAS team in KIT

Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT)

Contents

- Introduction -- The Karlsruhe Research Accelerator (KARA) --
 - Microtron, Booster Synchrotron and Storage Ring
- Trouble Report in 2018
 - Failure in Microtron Linac
- RF System in KARA Storage Ring
 - Overview
 - RF Control System
 - Beam Loading Effect
 - RF Modulation Scheme
 - Outlook: Running Plan NOW

Introduction (1) Karlsruhe Research Accelerator

Extended DBA Lattice (Dispersion>0 in straight section) Designed Emittance = 59 nm-rad

Beam Energy	< 2.5 GeV
Circumference	110 m
RF Frequency	499.7 MHz
Harmonic Number	184
Number of RF Station	2
Number of Cavity in 1-Station	2
Acc. Voltage	1.4 MV (2.5 GeV)
Ring Lattice	DBA

- 2.999GHz, Pulse-modulation
- Peak power ~ 2MW (4MW maximum)
- Pulse length: 5µs, Rep.rate: 1Hz
- From Kly. to Linac: Filled with SF6 gas
- 1 Ceramic window (water-cooled)
- Microtron Linac
 - Water-cooled
 - 2 pick-up antennas

Trouble Report in 2018 (2)

- RF-Breakdown in Microtron Linac (about 20 years old)
 - 15.March.2018, RF-reflection power from the microtron linac became higher and intra-cavity power decreased drastically.

- The reflection power obviously increased.
- 2 pick-ups on the linac in different position had different pattern.

This could be from a local discharge inside the linac.

*Initially we suspected a discharge on the ceramic window in the waveguide, so we polished/cleaned it but it could not help us.

Trouble Report in 2018 (2)

Time line from the failure until its recovery

Date	Events
<u>2018-03-15</u>	RF Problem in microtron linac
2018-03-19	Open waveguide system and cleaned ceramic window
2018-03-21	RF power test with load The window was fine.
2018-03-23	Closed waveguide system and started bake-out
2018-03-26,27	RF commissioning: Not good condition.
2018-03-28	Dismount the linac for visual inspection (fiber scope)
2018-04-04	Cleaning with dry N2 gas
2018-04-06	Installed linac again and bake-out over weekend
2018-04-09	Started again RF commissioning
<u>2018-04-19</u>	Started commissioning with beam

We could receive a lot of helpful and kind comments and information from many accelerator facilities in the world. <u>Thank you very much!</u>

Trouble Report in 2018 (3)

Ceramic window in waveguide

Vacuum side (Before cleaning)

Vacuum side (After cleaning)

Linac dismount...

Some (discharge?) mark and a scratch were found around the nose cone.

Trouble Report in 2018 (4)

Blow cleaning with dry N2 gas

Copper-like grains came out of linac. ...where did it come from?

Trouble Report in 2018 (4)

The commissioning took about 1 week from very low to sufficient power.

Making a reflection-event counting system (by digital oscilloscope): commissionig by looking at the statistics.

The microtron has been recovered and is in operation now.

RF System in KARA Storage Ring (1)

Parameters	500MeV (Injection)	2.5GeV (User Operation)		
RF / Revolution Freq.	499.7MHz / 2.72MHz			
Harmonic Number	184			
Total RF Voltage	300kV (Typ.)	1.4MV (Typ.)		
Energy Loss per Turn	995.9eV	622.4keV		
Synchronous Angle	0.05deg.	6.38deg.		
Momentum Compaction	0.0105	0.00867		
Synchrotron Frequency	35.0kHz	34.0kHz		
Energy Spread (rms)	1.82×10 ⁻⁴	9.08×10 ⁻⁴		
Bunch Length (rms)	8.67ps	36.9ps		
Total Klystron Output	5.2kW (150mA)	140kW (140mA)		
Ramping Time	-	3 minutes		
Tuner Dead Band	0.1~0.5deg.	0.1~0.5deg.		
Filling Pattern	Partical (30~33x3 bunches) or (30~33x4 bunches)			

RF System in KARA Storage Ring (3)

LLRF Controller: DIMTEL LLRF9/500

Signal	Symbol	Ratio to $f_{\rm rf}$	Frequency (MHz)
Reference	$f_{ m rf}$	1	499.654
IF	$f_{ m IF}$	$\frac{1}{12}$	41.6378
Local oscillator	$f_{\rm LO}$	$\frac{11}{12}$	458.0162
ADC clock	$f_{ m ADC}$	$\frac{11}{48}$	114.5040
DAC clock	$f_{ m DAC}$	$\frac{11}{24}$	229.0081

- 1-Module per 1-Station(2Cavs.)
 - Cavity pickups are vectorsummed and processed in LLRF.
 - Phase adjustment between
 - 2 stations are necessary.

RF System in KARA Storage Ring (4)

- Transient Beam Loading in Partial Filling (Simulation)
 - Bunch Arrival Timing: **1.5 ps** difference in 150 mA.
 - Natural Bunch Length ~40 ps (rms)

Difference in the arrival timing is negligible in KARA 2.5 GeV normal operation.

RF System in KARA Storage Ring: Operation(1)

- 2 Longitudinal Modulation Schemes
 - Modulation by Kicker Cavity

- At the beam injection (500MeV), the kicker cavity is driven to excite quadrupole mode on the beam.
- The bunch lengthening occurs and the injection rate tends to be stabilized/improved.

RF System in KARA Storage Ring: Operation(2)

2 Longitudinal Modulation Schemes

Modulation by Kicker Cavity

Phase Modulation* by Main Cavities (R&D is now in progress) In 2.5GeV, the kick by the kicker cavity is too weak to excite the oscillation. We have introduced a function of the phase modulation into the KARA LLRF on September 2018.

The First Trial of RF-PM in 2.5GeV

*S.Sakanaka et al., PRST-AB 3 050701 (2000).

RF System in KARA Storage Ring: Operation(3)

Karlsruher Institut für

Outlook: Running Project NOW (1)

- Renewal of RF Cabinets, Re-cabling of LLRF System
 - Re-calibration of RF power from each component is needed: power meter, calorimetry / beam measurement
- New Master Oscillator
 - Rohde&Schwarz SMA100B: Low Phase Noise...-155 dBc/Hz (7.1 femto-sec. in 500 MHz)
- New Pre-amplifiers
 - Storage Ring: 500 MHz CW Pmax=50 W
 - Microtron / FLUTE: 2.999 GHz Pulse(Rep.Rate<10 Hz) Pmax=250 W(Peak)</p>
 - Personal Safety System Interlock: The amplifier turns off when an alarm happens.
- Renewal of Klystron Protection System
 - Now: HVPS for KLY...PLC for water&air, self-made system for other issues
 - Plan: replacing the self-made system to LLRF, optical fiber for solenoid interlock

Outlook: Running Project NOW (2)

Renewal of 500MHz Distribution System

Thank you very much for your attention!

Backups

RF System in KARA Storage Ring (1)

- Low Level RF System (19inch,1-rack)
 - Based on DIMTEL LLRF System
 - (Klystron, Cavity tuner) control

- Klystron, Circulator and Waveguides
 - 250kW Klystron (EEV), 1Klystron/Station
 - Circulator (AFT), Magic-T ... Split into 2 ports

RF System in KARA Storage Ring (2)

- RF Cavity (2Cavs/Station)
 - ELETTRA Type Cavity
 - Q0~40000, R_{sh}~3.3MΩ
 - Vc = 350kV/Cavity (@2.5GeV)

- Cavity Cooling System
 - 1-Chiller for each Cavity
 - Settled Temp. = 40~50degree
 - Controllable for each Cavity independently

The RF System in KARA is stably operated in daily beamtime.

RF System in KARA Storage Ring (3)

n X

Control System: Control System Studio (CSS) & EPICS

CS-Studio

File Edit Search CS-Studio Window Help

Laboratory for Applications of Synchrotron Radiation (LAS), KIT

RF System in KARA Storage Ring (4)

0 X

Tuner Control: Compression-type tuner (not plunger-type)

CS-Studio

File Edit Search CS-Studio Window Help

RF System in KARA Storage Ring (2)

