

Status and New Developments of ALBA RF Systems

ESLS RF Meeting – Soleil – Nov 2018

Angela Salom on behalf of RF team: Francis Perez, Bea Bravo, Jesus Ocampo, Pol Solans and Zahra Hazami (PhD)

Outline

✓ ALBA RF Overview

✓ 2018 Operation

- Statistics
- Main operation issues of RF systems

✓ RF upgrades

- 50kW SSPA for Booster
- Fiber optics of cavities
- HW of LLRF

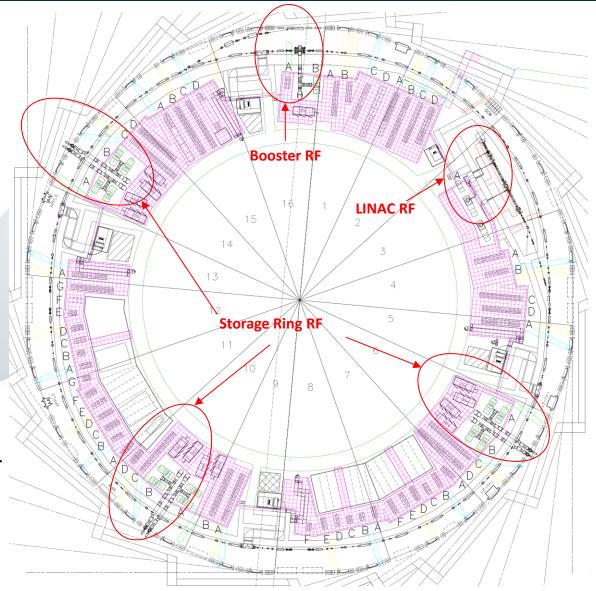
✓ New developments and future upgrades

- 3rd Harmonic Active Cavity with transdampers
- 1.5GHz SSA transmitter

ALBA RF Overview

RF at ALBA Overview

Linac


- 2 Klystrons + WG
 system + travelling
 wave cavities at 3GHz
- 90keV to 100MeV

Booster

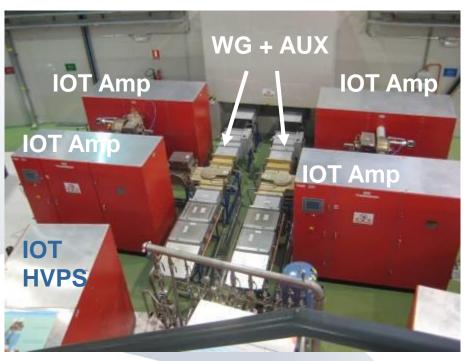
- 50kW SSPA + WG
 System + 5-cell cavity
 @ 500MHz
- 100MeV to 3GeV

• SR

- 12 IOTs + WG system +
 6 cavities @ 500MHz
- Beam stored @ 3GeV

BOOSTER RF

Service Area: RF amplifier + Auxiliaries

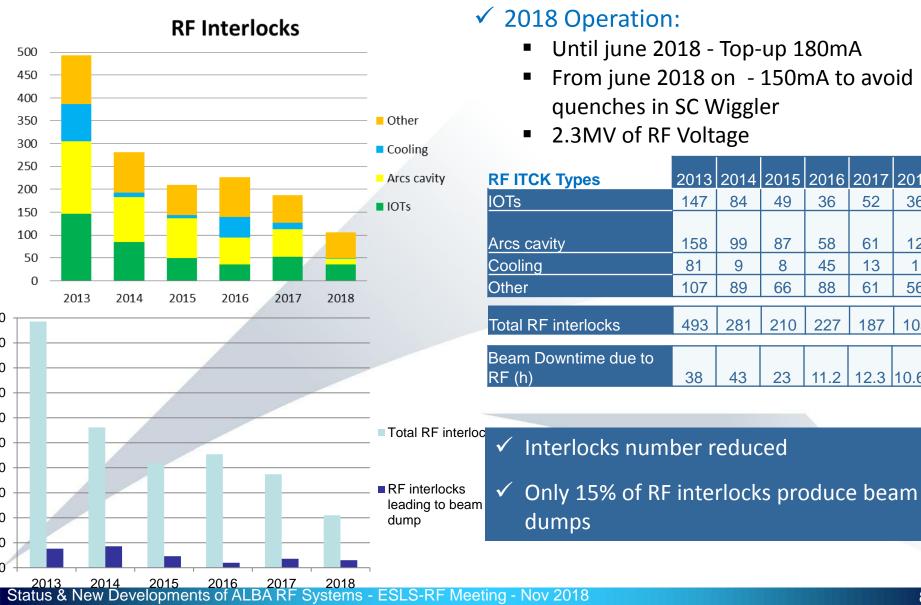

Tunnel: 5Cell Cavity – 500MHz

SR RF

Tunnel: Dampy Cavities 1Cell – 500MHz

Service Area: RF amplifier + Auxiliaries

Operation Statistics

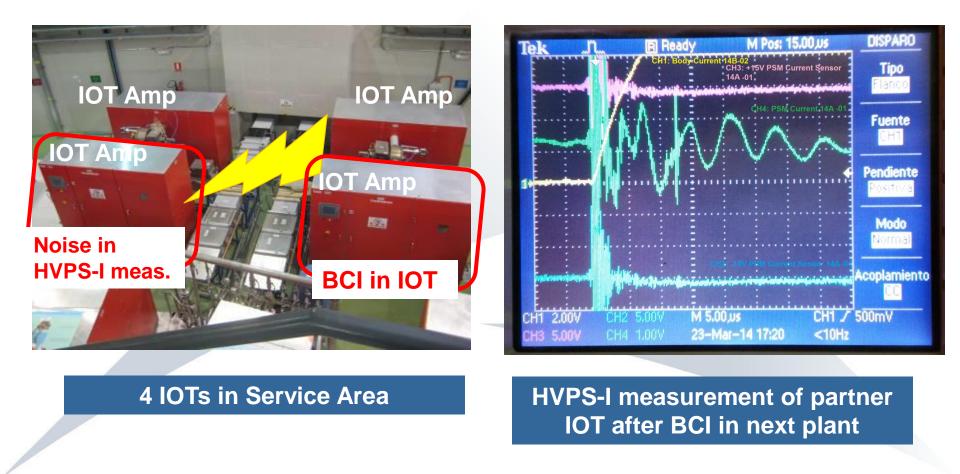


RF Statistics of 6 years operation

8/29

2016 2017

11.2 12.3 10.64


Beam dumps due to RF interlocks

Electrical noise produced by IOTs discharges (73%)

Electrical noise induced by Body Current Interlocks

 Body current interlock in an IOT produce electrical noise in HVPS current measurement of partner IOTs

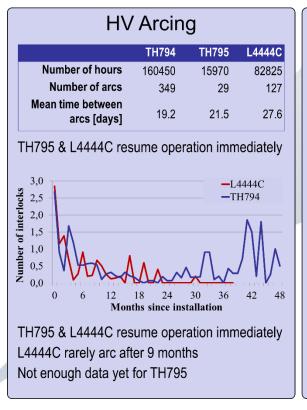
Provisional solutions

✓ Earth improvement

- IOTs and HVPS connected to earth using 60cm wide plates
- Earths of IOTs isolated from earth of neighbor IOT

✓ Analogue filter added to affected control signals

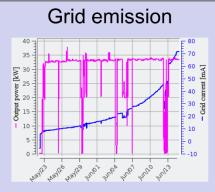
Noise level reduced but not completely removed.


✓ IOT Trolley earth connection improved

IOTs Performance

✓ ALBA IOTs: At present 12 IOTs installed in SR from L3 and Thales

- Thales TH-794 kept as spare (started operation in 2012)
- Thales TH-795 in operation since 2015
- L3 L4444C in operation since 2015



Durability									
	TH794	TH795	L4444C						
Total number of units	33	3	15						
Units failed before 2000h	7	0	0						
Units failed after 2000h	16	0	0						
Average failure time of units older than 2000h	13340	0	0						
Average age of available units	23498	7989	8583						
Oldest unit	31910	12246	21519						

TH794 failure modes:

- Fissure in input window due to HV arc
- Output window crack due to RF field
- Available units already average > 20000 h

TH795 and L4444C no failures yet. To soon to determine durability.

- Cathode material evaporates from cathode and is deposited on grid causing emission
- Ionized gas is attracted by lower potential of the cathode, raising the temperature

Delicate balance between:

- A colder grid with low enough emission
- A hotter cathode to achieve nominal power

Check regularly heater setting!

RF Upgrades

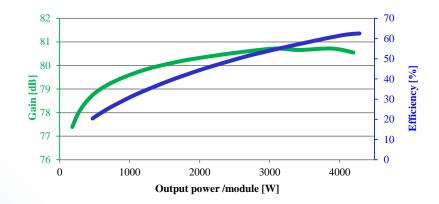
50kW SSPA for Booster

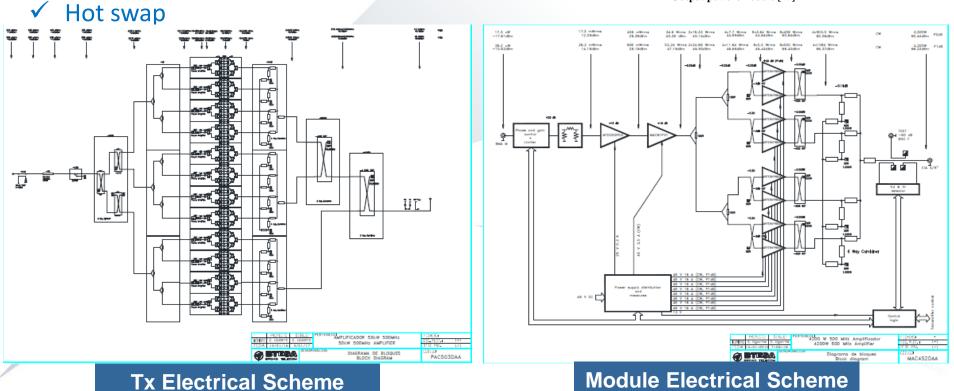
✓ New SSPA Tx in Booster

- No High Voltage, no vacuum, no ceramics
- Modularity: 12 modules with 8 transistors each. Only 10 modules required for operation at 35kW
- Hot Swap of modules possible in operation at full power

✓ SAT problems

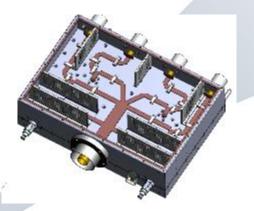
- Noise induced in LLRF Drive by power supplies of SSPA → Optical link installed between LLRF and SSPA to isolate earths
- Already 3 modules replaced



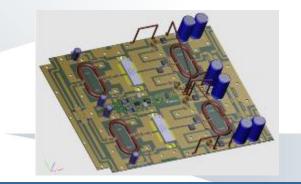


General Parameters of 50kW SSPA

- ✓ 96 transistors 50V 600W
- ✓ 12 modules water cooled
- ✓ 500MHz CW, 48kW @ 2dB compression
- ✓ Gain > 78dB, Effiencieny > 60%


Technology of 50kW SSPA for Booster

No pre-driver needed


12 Modules combined in Groups of 4 using Gysel Topology

Basic Module with 8 transistors grouped in pairs:

- 3 Power Supply Sets per module 3000W (only 2 needed)
- 4 Different pre-programmed Drain Voltages: 41V, 43V, 48V and 50V
- P Out = 4200W per module

Main lines of the 4-way combiner

Basic unit with 2 transistors – 600W @ 50V

- Coaxial baluns for push-pull structure
- Gate voltage adjustable by potentiometer

Other upgrades

✓ Cavities fiber optics replaced inside tunnel

- Fibers inside tunnel got darkened due to radiation
- 30m fibers replaced by 25m fiber outside tunnel + 5m of disposable fiber inside tunnel joint by a splice

✓ LLRF HW Motherboard being replaced

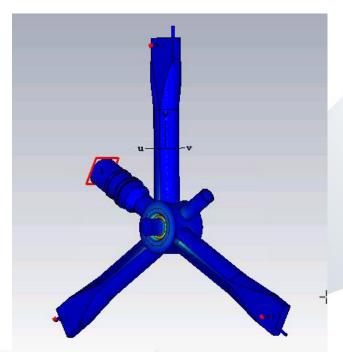
- Present LLRF HW based on Windows XP drivers
- FPGA board being replaced by stand-alone system based on Linux drivers: picodigitizer

Future Upgrades and New Developments

1.5GHz RF System

✓ CLIC Collaboration to develop 1.5GHz System between CELLS and CERN

- To be used as an RF accelerator system in CLIC
- To be used as third harmonic cavity in CELLS


✓ Characteristics of 1.5GHz for ALBA

- 4 x SSA Tx: 25kW 1.5GHz
- 4 x Third Harmonic Cavities: 200kV

1.5GHz HOM Active Cavity

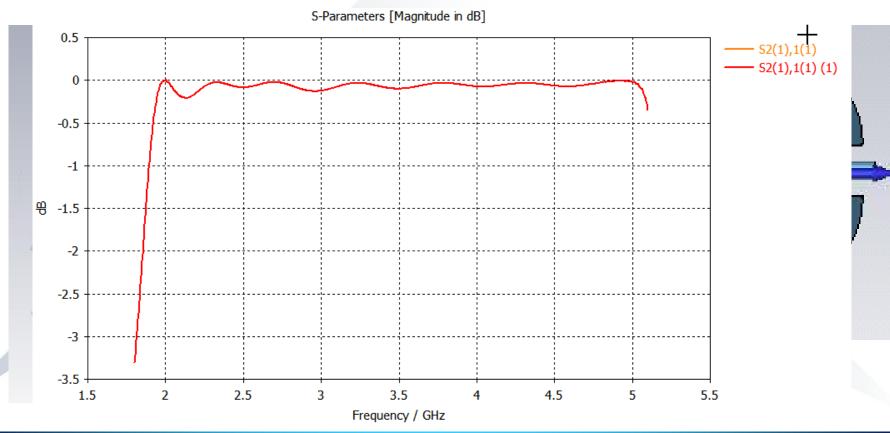
✓ Cavity CST Simulaions

Cavity: 1/3 Direct scale of Dampy

- Rs = 1.5MΩ
- Q = 17000
- Fr = 1499MHz
- V = 215kV
- New design of dampers
- EM design and Mechanical design finished
- Tender to be published by the end of the year
- Commissioning expected in 2020

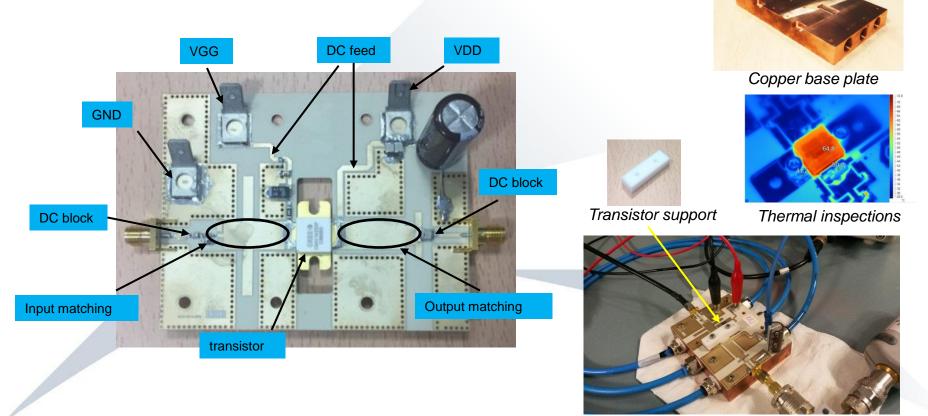
Mode 1 E-Field

Orientation	Outside
Component	Abs
Frequency	1498.31 MHz
Phase	0
External Q	16721.3
Maximum	5.14702e+07 V/m


Thanks Bea for all the work!!!

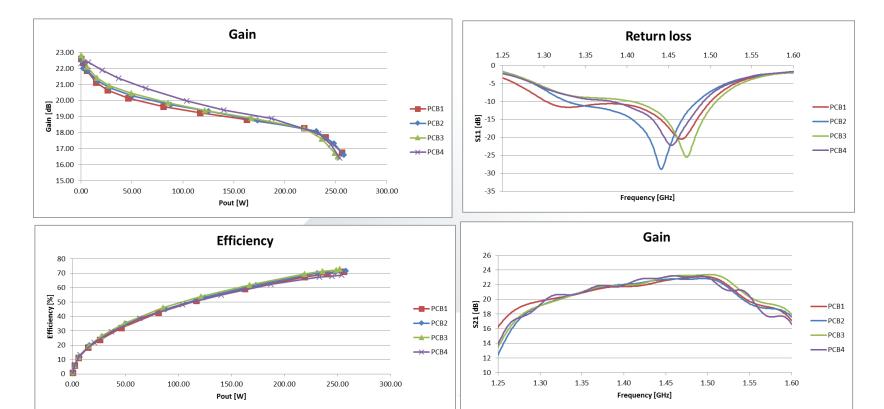
✓ Coaxial damper transition to waveguide

- No ferrites required
- External load to dissipate power of HOM


1.5GHz SSA

✓ SSA 250W module based on GaN CREE CGH14250

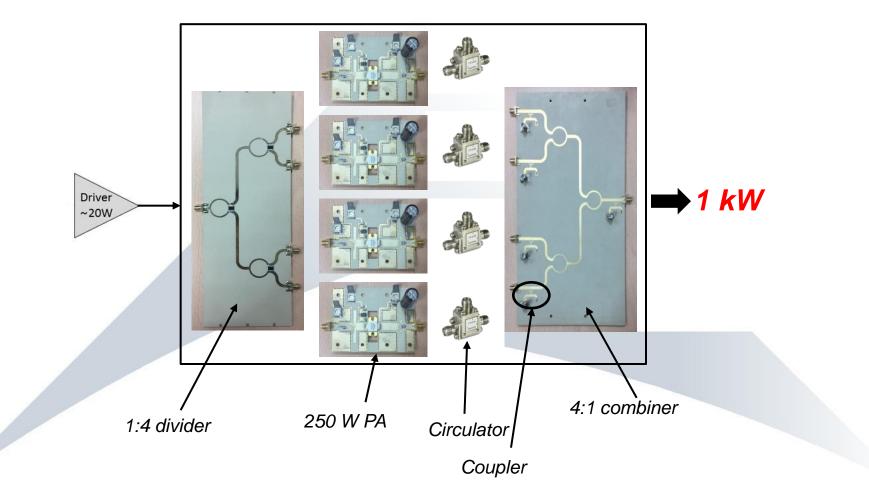
Input and output matching done with stubs


No baluns and no trimmers

water cooling

3rd PA module design under test

ALBA1.5GHz SSA: Power tests of 4 modules


Values at 37.5dBm input

1	Board	Gain [dB]	Power [W]	Efficiency [%]	J tem [ºC]	C temp [ºC]	AM/PM [ºC]
	PCB1	16.58	256.00	71.11	53	109	-32.40
	PCB2	16.62	258.00	71.67	57	122	-38.34
	PCB3	16.51	252.00	73.04	54	113	-32.94
	PCB4	16.43	254.00	68.65	50	130	-

1.5GHz SSA 1kW tests

Next step

Conclusions

✓ RF Operation:

- 1 or 2 RF interlocks per week, but "only" 1 beam dump every 1 or 2 months
- Main Interlock sources: Electrical noise
- New SSPA installed in Booster

✓ Future RF Upgrades:

- 3rd Harmonic Cavity prototype
- 1.5GHz SSPA Tx

Thanks for your attention Questions?