PETRA IV

System design concept

Old and new machine
The Fundamental RF System
The Harmonic RF System

Google Streetview

PETRA III

Main parameters:

I = 2304 m beam energy = 6.08 GeV beam current: 100 mA (4.8 E12 e⁻), Top Up emittance (hor.) = 1 nmrad energy loss: ca. 5 MeV per turn (ca. 65 % from damping wigglers) 20 undulators fill pattern: • timing mode : 40 bunches, 192 ns gap 60 bunches, 128 ns gap

continuous mode:

480 bunches, 16 ns gap

960 bunches, 8 ns gap

Plans for PETRA IV

- 2 more experimental halls
- complete new preaccelerator chain
- New injection scheme (no topup – but swap out part of beam and on axis injection

RF-Related PETRA IV Parameters

"H7BA"-Lattice with 26 IDs

		remarks
Energy	6.0 GeV	
RF frequency	500 MHz	
Circumference voltage	$6 \text{ MV}_{\text{nom}}$ (9 MV _{max})	Optimized for max. Touschek lifetime. Effect of 3. harm. syst. has not yet been considered
Beam current	200 mA	
Energy loss per turn	3.32 MeV	IDs included
Energy spread	0.905·10 ⁻³	w/o IBS
Momentum compaction factor	1.43·10 ⁻⁵	About 80 times smaller than PETRA III
Bunch length (1σ)	6.8 ps	
Long. damping time	16.2 ms	

rf- part of PETRA IV

DESY.

Rüdiger Onken, DESY | 22nd ESLS Meeting @ SYNCHROTRON SOLEIL | 08.10.2018 | Page 6

Fundamental cavities

What options are there?

Continuing use of the existing 5- or 7-cell cavities	Developing a new cavity	
 Cheap High shunt-impedance Space-saving Decades of experience Unclear HOM spectrum with high impedances Hardly any possibilities for HOM damping 	 Cavity can be optimized for PETRA IV Need about 5 years from idea to the first prototype Childhood diseases are expected 	
	Using an existing and proved modern cavity design	
	 Operating experience available Childhood diseases are overcome Possibly not ideal for PETRA VI 	

"The MAC believes that it is mandatory to **replace the present RF cavities with HOM-damped** ones. Given the long lead time to develop such systems the MAC recommends to finalize a design based on **well-established solutions (e.g. BESSY cavities** or a rescaled version of the ESRF ones) and to start the construction of a prototype as soon as possible. The MAC would like to see a related fully resourceloaded plan."

HOM-Damped EU-Cavity

Existing and proved modern cavity design for synchrotron light sources

Courtesy of Ernst Weihreter, HZB

Courtesy of Wolfgang Anders, HZB

HOM-Damped EU-Cavity

Cavity Parameter	Design (2002)	Series (BESSY 2013)	
RF frequency	500 MHz	499.654 MHz	
Tuning range	not reported	2 MHz	
Shunt impedance	4 ΜΩ	3.4 MΩ (A10)	influenced by damper cut-off PETRA 7-cell cav.: 3.95 M Ω per cell
Cut-off frequency of HOM dampers	650 MHz	625 MHz	
Longitudinal HOM impedances	4 kΩ w/o E011	< 10.8 kΩ (*)	PETRA 7-cell cav.: 32 k Ω per cell
Transverse HOM impedances	< 170 kΩ/m	< 50 kΩ/m (*)	PETRA 7-cell cav.: 450 k Ω /m per cell
Quality factor	not reported	29.600 (A10)	
Maximum cavity voltage	895 kV	730 kV (A10)	
Maximum power dissipation	100 kW	78.4 kW (A10)	
Operational cavity voltage	-	500 kV (A17, B18)	15 arcing trips per cavity and year (A17) PETRA 7-cell cav.: 1.2 arcing trips per cavity and year (0.2 arcing trips per cell and year) @ 240 kV per cell
Insertion length	< 700 mm	500 mm	
Beam hole diameter	74 mm	74 mm	
			(A10): ALBA, 2010 (A17): ALBA, 2017 (B18): BESSY 2018 (*): Data of the 2nd PT

DESY.

HOM-Damped EU-Cavity

How many Cavities are required for PETRA IV?

	ALBA: <15> arcing trips per cavity and year		PETRA III: <1> arcing trip per cavity and year @ 0.80 MV/m
Circumference voltage	6 MV	6 MV	9 MV
Number of Cavities	12	20	20
Operational cavity voltage	500 kV 🆌	300 kV	470 kV
Cavity voltage gradient	1.67 MV/m	1.00 MV/m	1.57 MV/m
Power dissipation per cavity	36.8 kW	13.2 kW	29.8 kW
Power to beam per cavity	55.3 kW	33.2 kW	33.2 kW
Coupler power	92.1 kW	46.4 kW	63.0 kW
5% transmission loss	4.6 kW	2.3 kW	3.1 kW
Coupling factor	2.5	3.5	2.1
Total rf power consumption	1160 kW	975 kW	1325 kW
Installed rf Power (20% reserve included)	12 x 115 kW	20 x 60 kW	20 x 80 kW

Trip Compensation

Trip Compensation

Many cavities make a big trip-potential

Voltage and power at nominal beam operation with one system tripped Synchronous phase changes by 2 °

from 33.6° to 35.6°

RF System Structure (fundamental)

5 groups with 4 cavities

DESY.

Harmonic RF- system

Three different designs are common used

- The simplest case is just a **passive copper cavity**. The harmonic voltage is induced by the beam itself. V_{HHC} or ϕ_{HHC} can be adjusted by tuning the resonance frequency.
- Something more complex is an active system. The cavity is fed by a RF power source like the fundamental RF system.
- Even more complex is the use of a superconducting cavity. It makes sense for example if high V_{HHC} is required, but the space for a corresponding number of copper cavities is not available.

Pros and Cons of Different Designs

Incomplete selection

Passive copper cavity	Active copper cavity	Superconducting cavity
 Simplest set-up optimum operation only possible at one beam current Gap in the fill pattern induces a strong modulation of the V_{HHC} and φ_{HHC} which limits the effect operation on the Robinson unstable slope, generating a Robinson growth rate 	 RF power source required allow operation near optimum V_{HHC} and φ_{HHC} for any I_{beam} Gap in the fill pattern induces a strong modulation of the V_{HHC} and φ_{HHC} which limits the effect operation on the Robinson unstable slope, generating a Robinson growth rate 	 Cryogenic system required Because of the narrow cavity bandwidth, difficult to achieve ideal φ_{HHC} and V_{HHC} at the same time. Passive operation down to very low currents less sensitive to transients (filling gap) less sensitivity to the Robinson instability due to small BW and detuning near 90°

Harmonic RF System for PETRA IV

Consideration of a 3rd harmonic system using downscaled HOM-Damped EU-Cavities

The formula gives the required ratio $k_{\rm fp}$ = $V_{\rm HHC}/V_{\rm RF}$

The subscript fp stands for flat potential

$$k_{\rm fp} = \sqrt{\frac{1}{n^2} - \frac{1}{n^2 - 1} \left(\frac{U_0}{e_0 V_{\rm rf}}\right)^2},$$
 (11)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 064401 (2014)

Equilibrium bunch density distribution with passive harmonic cavities in a storage ring

Pedro F. Tavares, Åke Andersson, Anders Hansson, and Jonas Breunlin

Required Voltage $U_0 = 3.32 \text{ MeV}$ $V_{RF} = 6 \text{ MV}$ n = 3 (1,5 GHz)

⇒k_{fp} = 0.27 ⇒Σ**V_{HHC} = 1.62 MV** Required number of cavity cells Limiting parameter is the voltage gradient

VRF /cell length \leq 1 MV/m cell length = 10 cm

 $\Rightarrow V_{HHC} \le 100 \text{ kV}$ $\Rightarrow N_C \ge 16$ chosen NCC = 20 for higher reliability

Courtesy of Beatriz Bravo, ALBA

Harmonic RF System for PETRA IV

Consideration of a 2rd harmonic system using old PETRA 6-cell cavities

The formula gives the required ratio $k_{fp} = V_{HHC}/V_{RF}$

The subscript fp stands for flat potential

$$k_{\rm fp} = \sqrt{\frac{1}{n^2} - \frac{1}{n^2 - 1} \left(\frac{U_0}{e_0 V_{\rm rf}}\right)^2},\tag{11}$$

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 064401 (2014)

Equilibrium bunch density distribution with passive harmonic cavities in a storage ring

Pedro F. Tavares, Åke Andersson, Anders Hansson, and Jonas Breunlin

Required Voltage $U_0 = 3.32 \text{ MeV}$ $V_{RF} = 6 \text{ MV}$ n = 2 (1,0 GHz)

⇒k_{fp} = 0.385 ⇒Σ**V_{HHC} = 2.31 MV**

Required number of cavity cells

Limiting parameter is the power dissipation per cell P_{diss} /cell $\leq 3 \text{ kW}$

 $\Rightarrow \mathbf{V}_{\mathsf{HHC}} \le \mathbf{86} \ \mathsf{kV}$ $\Rightarrow \mathsf{N}_{\mathsf{C}} \ge 27$

chosen N_{cc} = 30 (5 cavities) for higher reliability

≈20 cavities are available

Harmonic RF System for PETRA IV

Comparison of PETRA 6-cell cavity and downscaled HOM-Damped EU-Cavity

Harmonic Number	2	2	3	3
Cavity type	Passive PETRA 6-cell Cavity	Active PETRA 6-cell Cavity	Passive downscaled HOM- Damped EU-Cavity	Active downscaled HOM- Damped EU-Cavity
Number of HHC-cells	30	30	20	20
R/Q per HHC-cell	45 Ω ⁽¹⁾ (56.7 Ω ⁽²⁾)	45 Ω ⁽¹⁾ (56.7 Ω ⁽²⁾)	88 Ω ⁽³⁾	88 Ω ⁽³⁾
R _S per HHC-cell	1.22 MΩ ⁽¹⁾ (1.53 MΩ ⁽²⁾)	1.22 MΩ ⁽¹⁾ (1.53 MΩ ⁽²⁾)	1.50 MΩ ⁽³⁾	1.50 MΩ ⁽³⁾
Operational HHC voltage per cell	77 kV	77 kV	81 kV	81 kV
Operational HHC voltage	2.31 MV	2.31 MV	1.62 MV	1.62 MV
HHC voltage gradient	513 kV/m	513 kV/m	810 kV/m	810 kV/m
Bandwith	37 kHz	74 kHz	88 kHz	176 kHz
HHC-detuning	80.9° 116 kHz	71.6° 116 kHz	82,2° 320 kHz	74.3° 320 kHz
Power dissipation per HHC-cell	2.43 kW	2.43 kW	2.19 kW	2.19 kW
Power dissipation of all HHC-cells	72.9 kW	72.9 kW	43.7 kW	43.7 kW

(1) The experimental study of a higher harmonic rf system in PETRA, Kohaupt, PAC1983_2525

(2) B. Dwersteg -MHC- 27.06.1983

(3) 1.5 GHz CAVITY DESIGN FOR THE CLIC DAMPING RING AND AS ACTIVE THIRD HARMONIC CAVITY FOR ALBA, May 2017

Thank you, for Your attention

Annex / HOM-Damped EU-Cavity

ALBA RF Statistics

Annex / HOM-Damped EU-Cavity

ALBA RF Statistics

