22nd ESLS RF Meeting - SOLEIL

Paris, 8-9 November 2018

Harmonic RF systems for ESRF-EBS - Preliminary considerations -

Jörn Jacob, Vincent Serrière

The European Synchrotron

ESRF: FIRST 3rd GENERATION SYNCHROTRON LIGHT SOURCE

= 844 m

Circ

Existing Storage Ring

1992: commissioning 1994: external users since then:

- many upgrades
- brilliance increase by about a factor 1000

6 GeV Storage Ring 200 mA

DOST

Up to 100 keV X-ra

New Extremely Brilliant Source: EBS

- further brilliance increase by a factor 40
 2019: installation
- 2020: commissioning and resume user service

RF UPGRADE FOR THE ESRF-EBS STORAGE RING

Extremely Brilliant Source: \mathcal{E}_x : 4 nm \rightarrow 134 pm

10 December 2018: shut down existing machine 2019: Installation of new machine 2020: Commissioning EBS and Beamlines August 2020: Back to user service mode

EBS RF SYSTEM LAYOUT

EBS Storage Ring

EBS RF upgrade:

- Remove 5 five-cell cavities
- Remove 2 prototype HOM damped cavities from cell 23
- Install 13 single cell HOM
 damped cavities in cells 5, 7, 25
- Suppress existing 3rd Klystron transmitter in cell 25
- Move 3 x 150 kW SSAs from cell 23 to cell 25
- Rebuild waveguide distribution system
- Rebuild control system for klystron transmitters and cavities

Space for 3rd harmonic RF system

- Still under study:
 5 to 6 active NC cavities or passive Super3HC type?
- \approx 40 kW per NC cavity from SSA

MAIN RF PARAMETERS FOR ESRF-EBS UPGRADE

Total energy loss: © Energy loss from dipole radiation: © Energy loss from ID radiation:	3.2 MeV/turn 2.5 MeV/turn 0.7 MeV/turn
Maximum RF Voltage:	6.6 MV
Stored current with operational margin:	220 mA
HOM damped cavities:	
2 of 3 prototypes on SR since 2013:	0.5 MV / 90 kW (standard operation)
Prototypes validated with beam up to:	0.6~MV / $150~kW$ (phased for max beam loading)
All 12 series cavities conditioned to:	0.75 MV
EBS 30 % less total RF power than now:	≈ 1 MW at nominal 200 mA

HOM DAMPED SINGLE CELL CAVITIES

f _{res}	352.372	MHz
Q ₀	35700	(measured)
R/Q	145	Ω
R _s	≈ 5	MΩ
Tuning range	-350 / +900	kHz
V _{acc} nom/max	500 / 750	kV

[See A. D'Elia's talk]

HARMONIC RF SYSTEM FOR BUNCH LENGTHENING

OR

Dipole Couplers

Active copper cavity: Scaling to 1057.1 MHz Qo = 20000 $R/Q = 145 \Omega$

Passive SC cavity: Super3HC scaled to 1057.1 MHz

The European Synchrotron

ESRF

BEAM LOADING - NC ACTIVE HARMONIC CAVITY FOR BUNCH LENGTHENING

 $V_{acc}(\phi) = V_{c} \sin(\phi_{s} + \phi) + V_{h} \sin(n\phi_{h} + n\phi)$

Optimum Working point $(1^{st} \& 2^{nd} \text{ derivatives} = 0)$:

$$\begin{split} \varphi_{s} &= \pi - \arcsin[n^{2}/(n^{2}-1) \ U_{0}/V_{c}] \\ V_{h,opt} &= sqrt[\ V_{c}^{2}/n^{2} - U_{0}^{2}/(n^{2}-1)] \\ \varphi_{h,opt} &= (1/n) \arcsin[- \ U_{0} / (V_{h,opt} \ (n^{2}-1)] \end{split}$$

Optimum tuning (min power) \Leftrightarrow load angle = 0:

 ψ such that $V_{gr} // V_{c}$ ψ_{h} such that $V_{qhr} // V_{h}$

Beware, in the vector diagram: Main RF turns at $\phi = \omega t$ Harmonic RF at $n\phi = n\omega t$

BEAM LOADING FOR FIVE 3RD HARMONIC ACTIVE NC CAVITIES

BEAM LOADING FOR FIVE 3RD HARMONIC ACTIVE NC CAVITIES

Coupling: $\beta_h = 5$ $V_h = V_{h,opt} = 1.89 \text{ MV}$ $n\phi_h = n\phi_{h,opt} = -12.2 \text{ deg}$ Working point less

sensitive to harmonic cavity tuning

Below 200 mA: Pgenh-max = 230 kW

Assumptions:

RF loops (Amp, Phi, tuning	slower than	Synchrotron motion	slower than	Cavity Bandwidths (main & HC)
B ≈ 1 Hz	<<	fs ≈ 1 kHz … _{II}	<<	Above $\approx 40 \text{ kHz}$

- 1. Tuning angles, generator amplitudes and phases are constant at the scale of the synchrotron motion
- 2. The beam induced voltages in the cavities follow the beam phase

$$f_s = f_{rf} x \text{ sqrt} [\alpha \mathbf{K'} / (2\pi h E_0/e)], \qquad (\mathbf{K'<0} \Leftrightarrow \mathbf{DC} \text{ Robinson instability})$$

Numerical integration of synchrotron equation:

- Uniform filling (no transients)
- Starting with beam phase offset by +1 or -1 deg
- Tracking V_b, V_{bh} and ϕ_{beam} turn by turn
- Checking convergence (neglecting synchrotron oscillation damping)
- No linearization !

Threshold at \approx 150 mA confirmed by numerical integration

$$\begin{split} &V_h = 1.50 \; MV \quad (\neq V_{h,opt} \;) \\ &n\varphi_h = n\varphi_{h,opt} = -12.2 \; deg \\ &5 \; cavities, \; \beta_h = 5 \\ &\rightarrow Unstable \; for \; I_{beam} > 130 \; mA \end{split}$$

Threshold at \approx 130 mA confirmed by numerical integration

For active system, Integration of synchrotron equation indicates:

- Robinson stable if Harmonic RF beam loading > Main RF beam loading
 - \Rightarrow Sufficient harmonic cavity impedance,
 - \Rightarrow Sufficient number of harmonic cavities
 - \Rightarrow Upper limit for coupling β_h

MULTIBUNCH / SINGLE PARTICLE TRACKING – ROBINSON & PHASE TRANSIENTS

MULTIBUNCH / SINGLE PARTICLE TRACKING – ROBINSON & PHASE TRANSIENTS

 $V_{h} = V_{h,opt}$ $\phi_{h} = \phi_{h,opt}$ 5 active NC cavities $\beta_{h} = 3$

- It looks like AC Robinson instability,
- BUT: needs to be checked with multibunch multiparticle tracking codes !

 β_h < 3: AC like instabilities also for uniform filling

MULTIBUNCH / SINGLE PARTICLE TRACKING – ROBINSON

MULTIBUNCH / SINGLE PARTICLE TRACKING – ROBINSON & PHASE TRANSIENTS

Passive SC Cavity: $R/Q = 90 \Omega$, $Q_0 = 2e8$

The European Synchrotron

CONCLUSIONS OF THESE VERY PRELIMINARY CALCULATIONS

1. Active normal conducting cavities

- Integration of synchrotron equation indicates that strong beam loading from the harmonic cavities would be needed to avoid Robinson DC
- This is in contradiction with multibunch single particle tracking results requiring high β_h for stability
- Is the obtained AC like instability real? -> to be checked with multiparticle multibunch tracking
- Working points around $[V_{h,opt}, \phi_{h,opt}]$ look close to region of instability: this also needs to be confirmed

2. Passive Super3HC like SC cavities

- Former studies indicate that bunch lengthening operation at low current (e.g. few bunch fillings) is unstable (Robinson AC) unless several SC cavities are installed
- Phase transients with passive harmonic cavities, even with low R/Q as for SC cavities, seem to be stronger than with active cavities: to be confirmed
- 3. More studies are needed
 - The results presented here are very preliminary and partially contradictory
 - We decided to show them in order to trigger discussions and motivate further studies

