Friday, 9 November 2018, ESLSRF

Compensation of transient RF voltage using a kicker cavity

<u>Naoto Yamamoto</u>,

Shogo Sakanaka, Takeshi Takahashi High Energy Accelerator Research Organization Accelerator Laboratory (KEK)

Outline

• Harmonic RF system

- Motivation
- Physics
- Existing double RF system
- Reduction of Transient beam loading effect
 - Transient beam loading effect
 - Reduction of the effect
 - Normal-conducting TMo20 cavity
- Compensation of Transient effect
 - Basic idea
 - Compensation with <u>a kicker cavity</u>
 - Numerical estimation
- Summary

*N. Yamamoto, et al., PRAB 21, 012001 (2018).

9 Nov. 2018, ESLSRF

Motivation for harmonic RF system

- Quasi diffraction-limited synchrotron light sources, which aim at achieving the beam emittances of < 100 pmrad are being actively designed.
- In such ultralow-emittance rings, <u>emittance growth due to</u> intrabeam scattering are serious concerns.

http://kekls.kek.jp

Naoto Yamamoto

	nominal electron energy	E0 [GeV]		3	
	circumference	[m]		570,72	
<u>er</u>	RF frequency	f _{RF} [MHz]		500,07	
	harmonic number	h		952	
	RF voltage	$V_{RF}[MV]$		2,5	
	energy loss per turn (max. with ID loss)	[MeV]	0.	298 (0.85	1)
	momentum compaction factor	α_{c}	2	2.1893x10	-4
	damping time x,y,z	[ms]	29.2	5, 38.28, 2	22.63
	beam current	[mA]	0	200	500
	hor. emittance (not including ID)	[pmrad]	132,51	230,5	314,74
	ver. emittance	[pmrad]		8,1	8,2
	Touschek lifetime	[h]	—	2,9	1,8
, KEK	energy spread	x10 ⁻⁴	6,42	7,24	8,22

Motivation for harmonic RF system

- Quasi diffraction-limited synchrotron light sources, which aim at achieving the beam emittances of < 100 pmrad are being actively designed.
- In such ultralow-emittance rings, <u>emittance growth due to</u> intrabeam scattering are serious concerns.

http://kekls.kek.jp

					31		
	electron energy	E ₀ [GeV]	3				
<u>eter</u>	RF frequency	f _{RF} [MHz]	500.07				
	RF voltage	V _{RF} [MV]					
	beam current	[mA]	0 200		500		
	hor. emittance	[pmrad]	132.51	230.5	314.74		
	Touschek lifetime	[h]	_	2.9	1.8		

- One of solutions to mitigate such adverse effects is to reduce the electron densities of the bunches.
- For this purpose, the harmonic RF system is installed.

Naoto Yamamoto, KEK

KEK-LS

parame

9 Nov. 2018, ESLSRF

Physics of harmonic RF system

 Storage ring main cavity is used to replace energy lost through synchrotron radiation.

Physics of harmonic RF system

- Storage ring main cavity is used to replace energy lost through synchrotron radiation.
- By adding *n*th harmonic voltage (cavity), we can shape the bunch longitudinally.

Existing harmonic RF systems

 Harmonic RF systems have been installed in several 3rd generation light sources, and they have been successfully operated to lengthen beam bunches. (ALS, BESSY-II, SLS, ELETTRA, MAX-IV, ...)

[1] J. M. Byrd, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 271 (2000).
[2] M. Georgsson, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 469, 373 (2001).
[3] W. Anders and P. Kuske, in Proceedings of PAC 2003, (2003) p. 1186.
[4] M. Pedrozzi, et al., in Proceedings of SRF03 (2003) p. 91
[5] G. Penco and M. Svandrlik, Phys. Rev. Accel. Beams 9, 044401 (2006).
[6] N. Milas and L. Stingelin, in Proceedings of IPAC'10 (2010) p. 4719.
[7] P. F. Tavares, et al., Phys. Rev. Accel. Beams 17, 064401 (2014).

• Existing 1.5GHz harmonic cavity (3rd harm. of 500MHz main cavity)

		BESSY-II	ALS	SLS/ELETTRA	
NC or SC		NC	NC	SC	
R/Q	Ω	124	161	176**	
Unloaded-Q (Q ₀₎		13,900	21,000	2.0E+08	
Shunt impedance (R)	MΩ	1.72	3.38	35200**	
$R \equiv V_c^2 / P_c$	*NC: SC:	Normal conducting Super conducting	**	Sum of two cavities	
namoto, KEK		9 Nov. 2018, ESLSRF			

Existing harmonic cavities (cont.)

BESSY-II SLS/ELETTRA Long, mode Cavity He couplers reservoir ALS Arc Monitor Window Transv. mode Coupling Port couplers Cooling Channels **BESSY-II** ALS **SLS/ELETTRA** Type NC Beam NC SC Beam Port Port R/Q 124 161 176 Ω 13,900 21,000 2.00E+08 $\mathbf{Q}_{\mathbf{0}}$ Tuner Plunger Nose Cones R MΩ 1.72 3.38 35200 Bessy-II: W.Anders, et .al., Proc. PAC (2003) TPAB004 Linear Actuator ALS : J. Byrd, et. al., NIM A, 439 (2000) pp.15-25 SLS: N. Milas. et.al., Proc. IPAC'10 (2010) THPE084

Outline

- Double RF system
 - Motivation
 - Physics
 - Existing double RF system
- Reduction of Transient beam loading effect
 - Transient beam loading effect
 - Reduction of the effect
 - Normal-conducting TMo20 cavity
- Compensation of Transient beam loading effect
 - Basic idea
 - Compensation with a kicker cavity
 - Numerical estimation
- Summary

Transient beam loading effect

- When <u>the gaps</u> (i.e. unoccupied RF buckets) are introduced in the fill pattern of the stored beam, the bunch gaps induce <u>considerable variations in both amplitude and phase</u> in the RF voltage.
- Higher harmonics, the effect is more serious.

Transient beam loading effect

• When <u>the gaps</u> (i.e. unoccupied RF buckets) are introduced in the fill pattern of the stored beam, the bunch gaps induce <u>considerable variations in both amplitude and phase</u> in the RF

Transient beam loading effect

Transient beam loading effect (cont.)

• NC harmonic cavity

*J. Byrd's presentation on ALERT, Sep. 2016 *J. M. Byrd, et al., NIM A 455, 271 (2000).

We began an investigation to understand the effect.

Office of

ACCELERATOR TECHNOLOGY& ATA

Naoto Yamamoto, KEK

9 Nov. 2018, ESLSKI

15

Reduction of the effect

- Such transient effects were well-investigated by J. Byrd, et al. .
- It was reported that the reduction of a <u>total R/Q</u> of harmonic cavities is essential to alleviate such transient effects.

Reduction of the effect

- Such transient effects were well-investigated by J. Byrd, et al. .
- It was reported that the reduction of a <u>total *R/Q*</u> of harmonic cavities is essential to alleviate such transient effects.

Normal-conducting harmonic TMo20 cavity

• Normal conducting TMo20 cavity is a candidates because of it's <u>high unloaded-Q</u> and <u>small R/Q</u> (large stored energy).

HOM-Damped TMo20 cavity (508MHz)

 This type cavity was pioneered by Dr. Ego and was developed as a accelerating cavity for the "Spring-8 II" storage ring.

Figure 1: Structure of the new HOM-damped cavity.

* H. Ego, et. al., PASJ11, (2014) MOOL14

Table 1: RF Properties of the TM020 Mode

Shunt impedance (R_a) [M Ω]	6.8
Unloaded Q (Q_a)	60,300
R_a/Q_a	113
Accelerating voltage [kV]	900

Figure 3: Inner shape of the cavity and the TM020 field distributions. Blue and red arrows show electric and magnetic fields, respectively.

Reduction of the effect

- Such transient effects were well-investigated by J. Byrd, et al. .
- It was reported that the reduction of a <u>total *R/Q*</u> of harmonic cavities is essential to alleviate such transient effects.

Normal-conducting TMo20 cavity

*N. Yamamoto, et al., PRAB 21, 012001 (2018).

• Normal conducting TMo20 cavity is a candidates because of it's <u>high unloaded-Q</u> and <u>small R/Q</u> (large stored energy).

		TM020	ALS	SLS/ ELETTRA
Harmonic voltage fluctuation (KEK-LS)	R/Q Ω	2 77	161	176
vs Total R/Q	Unloaded-Q	37449	21000	2.0E+08
$= \begin{bmatrix} 50 \\ TM020 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Coupling β	0.27	1.08	3099
\overrightarrow{ALS} + \overrightarrow{BESSY} +	Loaded-Q	29411	10088	64514
SLS/ELETTRA A	Fill time Us	s 6.2	2.1	13.7
Bunch gap				
50 120 ns 60 ns	Cav. number	- <u>5</u>	7	1 module
	total R/O ග	2 <mark>385</mark>	1127	176
	V _{hc} / cav. k	/ 155	111	777
	Pc/cav. kV	V <mark>8.4</mark>	3.6	0.0
	$\Delta V_c/V_c$ (6ons)	7.1%	22.0%	3.2%
total R/Q [kΩ]	SLSRF			21

Normal-conducting TMo20 cavity

*N. Yamamoto, et al., PRAB 21, 012001 (2018).

• Normal conducting TMo20 cavity is a candidates because of it's high unloaded-Q and small R/Q (large stored energy).

Outline

- Double RF system
 - Motivation
 - Physics
 - Reviews of existing double RF system
- Reduction of Transient beam loading effect
 - Transient beam loading effect
 - Key parameter for the reduction of the effect
 - Normal-conducting TMo20 cavity
- Compensation of Transient beam loading effect
 - Basic idea
 - Compensation with a kicker cavity
 - Numerical estimation
- Summary

• If the voltage fluctuation is <u>small</u>, we can further reduce the transient effect using an active compensation technique.

- If the voltage fluctuation is small, we can further reduce the transient effect using an active compensation technique.
- We investigated two measures;

(a) compensation on the main and harmonic cavities,

- If the voltage fluctuation is small, we can further reduce the transient effect using an active compensation technique.
- We investigated two measures;

(a) compensation on the main and harmonic cavities,

(b) compensation using a separate kicker cavity.

- If the voltage fluctuation is small, we can further reduce the transient effect using an active compensation technique.
- We investigated two measures;

(a) compensation on the main and harmonic cavities,

(b) compensation using a separate kicker cavity.

Advantage of the method (b)Input RF power is minimized by optimizing the cavity bandwidth.

Disadvantage

 Another space in the ring, RF system (low level system, RF amp ...)

Compensation with a kicker cavity

System overview

We will use <u>an active feedforward low level control</u>, a kicker cavity <u>having the wide bandwidth</u> and <u>a Solid state amplifier</u>.

Compensation with a kicker cavity

System overview

We consider to use <u>an active feedforward low level control</u>, <u>a kicker</u> <u>cavity having the wide bandwidth</u> and <u>a Solid state amplifier</u>.

How to obtain the feedfoward signal

- 1. The RF voltage of the kicker cavity can be decided to suppress phase shifts of the bunches along the train.
 - * Main and harmonic voltage can be evaluated from the fill pattern.

How to obtain the feedfoward signal

- Evaluate the kicker cavity voltage 1.
- Apply the bandwidth limitation, where the bandwidth should 2. be wider than the repetition frequency of the bunch train.

How to obtain the feedfoward signal

1. Evaluate the kicker cavity voltage

How to obtain the feedfoward signal

1. Evaluate the kicker cavity voltage

How to obtain the feedfoward signal

How to obtain the feedfoward signal

- 1. Evaluate the kicker cavity voltage
- 2. Apply the bandwidth limitation, considering the repetition frequency of the bunch train.

Input RF power can be estimated, taking into account the cavity and amplifier responses.

Compensation	Average Bunch	Peak Generator	Average	
bandwidth	length	Power	Generator Power	
[MHz]	[ps]	[kW]	[kW]	
	31.1			
1	35.6	11.1	5.6	
2	39.6	31.6	11.1	
3	40.9	46.7	14.7	

How to obtain the feedfoward signal

- 1. Evaluate the kicker cavity voltage
- 2. Apply the bandwidth limitation, considering the repetition frequency of the bunch train.
- Input RF power can be estimated, taking into account the cavity and amplifier responses.

Compensation	Average Bunch	Peak Generator	Average	
bandwidth	length	Power	Generator Power	
[MHz]	[ps]	[kW]	[kW]	
	31.1			
1	35.6	11.1	5.6	
2	39.6	31.6	11.1	
3	40.9	46.7	14.7	

- Such compensation scheme can be applied to the SC harmonic system.
- At SLS, when the bunch gap was around 280 ns, considerable transient effect was observed.

*M. Pedrozzi, et al., SRF03 (2003) p. 91

Compensation bandwidth	Average Bunch length	Peak Generator Power	Average Generator Power
[MHz]	[ps]	[kW]	[kW]
—	35.8		
1	46.3	25.8	16.8
2	56.9	84.1	35.6
3	59.3	98.3	39.1

Summary

- Harmonic RF system is essential in ring based future light source.
- Normal conducting TMo20 cavity is a candidates for harmonic cavities because of it's high unloaded-Q and small R/Q (large stored energy).
- By using single kicker cavity with active feedfoward LLRF system, the beam loading effect for the double RF system can be minimized and avoided.

(This technique can be applied to not only NC but also SC systems.)

<u>Future tasks</u>

- Concrete designs of
 - the HOM-damped/high-coupling kicker cavity
 - the (adaptive) feedforward Low level RF system
 - Several tens kW level solid state amp. with wide bandwidth.

HOM-damped TMo20 harmonic cavity

Appendix : Hybrid mode at KEK-LS

Compensation Bandwidth	Average Bunch length	Peak generator power	Average generator power
-	21.3 ps	-	
1 MHz	26.1 ps	48.7 kW	33.6 kW

Appendix : Hybrid mode at KEK-LS

Table 4. O	peration	parameters	of Kicker	cavity
------------	----------	------------	-----------	--------

Compensation	Average Bunch	Peak Generator	Average
 bandwidth	length	Power	Generator Power
[MHz]	[ps]	[kW]	[kW]
_	16.1	_	_
0.5	19.0	105.9	72.1
1.1	27.4	373.9	164.0

Power estimation for TMo20 cavity

				TMo2o (no	ot damped)	
		PFcav	cERL buncher	1500 2.9	MHz MΩ	
Frequency	MHz	500	1300	10.0	12.0	
Shunt impedance	MΩ	7.0	5.8	170.3	186.4	
				3.2	3.5	
Achieved cavity power	kW	80.0	7.0	4458	4880	
Cavity voltage	kV	748.3	201.8	10.0	12.0	
Max. electric field	MV/m	11.4	7.2			
Max . magnetic field	A/m	8982	5698	ТМо2о (с	lamped)	
Max. power density	W/cm2	23.6	15.3	1500	MHz	
				2.4	2.4 MΩ	
Cavity power (usual operation)	kW	40.4	3.4	10	16.0	
Cavity voltage	kV	531.8	139.8	153.9	194.7	
Max. electric field	MV/m	8.1	5.0	8.3	10.5	
Max. magnetic field	A/m	6383	3948	5379	6804	
Max. power density	W/cm2	11.9	7.3	14.6	23.4	

Appendix : Analytical calculation of voltage fluctuation

$$\Delta V_{\max} / V_{ave} \cong e^{-n_g \alpha} - 1$$

$$Active cavity: \qquad \alpha = \frac{n\pi}{Q_L} (1 - i \tan \psi_n)$$

$$R : harmonics \\ n_g : number of gap (empty bucket) \\ R : shunt impedance, R = V_c^2 / P_c \\ U_0 : beam energy loss per turn \\ I_0 : stored beam current \\ \psi_n : detuning angle$$

$$Passive cavity: \qquad \alpha = \pi \left(\frac{R}{Q}\right)_n \frac{n(n^2 - 1)}{U_0} I_0 \cos^2 \psi_n (1 - i \tan \psi_n)$$
(without generator)

What is different between active and passive cavity?

$$V_c = V_g + V_b$$

 $V_{\rm c}$: cavity voltage , $V_{\rm g}$: generator-induced voltage, $V_{\rm b}$: beam-induced voltage

			* R.A. Rimmer, LBL	-33360, UC-414 (1992); and related papers.	
<u>Kicker cavity parameter</u>					
(not optimized)			PEP-II cavity (HOM-damped)		
Frequency	[MHz]	500			
R/Q	[Ω]	230			
Unloaded-Q		30000			
Cavity number		1			
Cavity coupling		149			
Loaded-Q		200			
3dB bandwidth	[MHz]	2.5			

		CAV_13 PEP-II	RF Cavity 8-19-97
Compensation bandwidth	Average Bunch length	Peak Generator Power	Average Generator Power
[MHz]	[ps]	[kW]	[kW]
	35.8		
3	59.3	98.3 -> 81.5	39.1 -> 31.6

Physics of harmonic RF system (cont.)

 The bunch shape can be calculated from the total RF voltage.

Total RF voltage

$$V(\phi) = V_{c,1}\cos(\phi + \phi_1) + V_{c,n}\cos(n\phi + n\phi_n)$$

Electron distribution

$$\rho(\phi) = \rho \exp\left(-\frac{1}{\alpha_c^2 \sigma_{\varepsilon}^2} \Phi(\phi)\right)$$

where

$$\Phi(\phi) = \frac{-\alpha_c}{2\pi h E_0} \int_0^{\phi} \{e_0 V(\phi') - U_0\} d\phi$$

 α_c : momentum compaction E_0 : nominal beam energy h: harmonic number σ_c : relative energy spread U_0 : turn radiation loss

main RF voltage only **Example for KEK-LS** w. harmonic voltage Cavity voltage Radiation loss 3rd Harm, Phase= -97.9, $V_{hc}/V_f = 0.311$ $\Delta E/E$ vs Phase -0.5π 0.0π 0.5π 1.0π -1.0π Beam Distribution Peak density ratio: 5.6 0.10π -0.10π 0.00π Phase, ϕ [rad]

Optimum condition of double RF system

$$V(\phi) = V_{fc} \left\{ \cos(\phi + \phi_{fc}) + k \cos(m\phi + \phi_{hc}) \right\}$$
$$V(0) = U_{Loss} / e$$
$$V'|_{0} = \alpha, V''|_{0} = 0$$

 V_{fc} : main voltage, m : harmonics U_{loss} :radiation loss per turn k: ratio of main and harmonic voltage ϕ_{fc} :main RF phase ϕ_{hc} : harmonic RF phase

 $\alpha \neq 0$: slope of total voltage at beam synchronous phase

Kicker cavity optimization

- R, shunt impedance, is sensitive to the required RF power (higher is better)
- In smaller unloaded-Q , coupling factor can be reduced (same bandwidth). If R/Q=constant, there is an optimum value.
- Cavity bandwidth; there is an optimum value.

Normal-conducting TMo20 cavity

*N. Yamamoto, et al., PRAB 21, 012001 (2018).

• Normal conducting TMo20 cavity is a candidates because of it's high unloaded-Q and small R/Q (large stored energy).

Physics of harmonic RF system

- Storage ring main cavity is used to replace energy lost through synchrotron radiation.
- By adding *n*th harmonic cavity (voltage), we can shape the bunch longitudinally.
- Because the harmonic voltage deaccelerates the beam, we can use the beam power to drive the harmonic cavity.
 (passive cavity operation)

$$V_{c,n} = -\frac{I_0 R_n \cos(n\phi_n)}{1 + \beta_n}$$

 I_0 : storage current R_n : shunt impedance of harmonic cavity β_n : cavity coupling coefficient

Physics of harmonic RF system

- Storage ring main cavity is used to replace energy lost through synchrotron radiation.
- By adding *n*th harmonic cavity (voltage), we can shape the bunch longitudinally.

 Because the harmonic voltage deaccelerates the beam, we can use the beam power to drive the harmonic cavity.

(passive cavity operation)

Development of the SSA for KEK-LS

Target Spec

- Wall plug Efficiency (AC \rightarrow RF) : >50%
- Output Power : > 150 kW
- Frequency : 500 MHz

Spec of prototype SSA

CW 1,000 W
+20.0 dB
class AB
2 kVA
LDMOS (NXP)

1kW SSA (prototype)

CA500BW2-2060M Test data

Device : D.A.(ALM0105-4748-SMA / R&K) + F.A.(MRFE6VP61K25N / NXP)Circulator(CSH498-502M1KA2 / Westmag) Signal : CW

Typical Performance: VDD = 50 Volts, IDQ = 150 mA Water Temperature : +18°C

Transient compensation for SLS (400mA)

Compensation	Average Bunch	Peak Generator	Average
bandwidth	length	Power	Generator Power
[MHz]	[ps]	[kW]	[kW]
	32.8		
1	43.6	39.6	26.1
2	55.6	130.4	55.6
3	59.0	153.2	61.1

Bunch Lengthening to mitigate Intrabeam scattering

[1] K. Kubo, S.K. Mtingwa, A. Wolski, Phys. Rev. ST Accel. Beams 8, 081001 (2005).

<u>Growth rate of the emittance [1]</u> :

$$(T_x)^{-1}, (T_y)^{-1}, (T_z)^{-1} \propto \frac{N_b}{\beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_z \sigma_p}$$

 N_{b} : Electron number in the bunch $g = E/mc^{2}$, b = v/c $e_{x,y}$: Beam emittance (x, y) s_{z} : Bunch length (rms) s_{p} : Energy spread (Dp/p, rms)

Considerable solution

- Increasing the x-y coupling
 - \rightarrow Round beam
- Lengthening the bunch length (σ_z)

→ Installing harmonic RF system