

Development of a Solid State Amplifier for the 3rd Harmonic Cavity for ALBA Synchrotron Light Source

Zahra Hazami CELLS Universitat Politècnica de Catalunya (UPC)

> Supervisors Dr. Francis Pérez (CELLS) Dr. Yuri Kubyshin (UPC)

> > Advisor Angela Salom

CELLS RF group P. Solans, B. Bravo, J. Ocampo

MOTIVATION

ALBA, a 3rd generation synchrotron light source

Required beam properties

- ✓ High brightness
- ✓ Small beam size
- ✓ large beam current

3rd Harmonic RF System

Solution to reduce collisions

Stretch the bunch longitudinally by adding 3rd Harmonic RF system

Electron bunch (Beam size) with the main RF system Electron bunch (Beam size) with the main and $$3^{\rm rd}$$ Harmonic RF system

The combined voltage from the main and 3rd Harmonic RF system is given by:

 $V(t) = V_{rf} \cdot \sin(\varphi + \varphi_s) + V_h \cdot \sin(n(\varphi + \varphi_h)) \qquad h = 3$

3rd Harmonic RF system for ALBA Storage Ring

4 Scaled Dampy Cavities working @ **1.5** GHz With Vh of **1** MV & Power/Cavity of **20** KW

Transistor's market comparison

Study and comparison of technical characteristics of existing transistors

Transistor	Manufacture Part Number	Part Number	Date of production	Frequency (GHz)	Power (W)	Efficiency (%)	Gain (dB)	Price (€)
	BLF647P (NXP)	LDMOS (Si)	2013	HF-1.5	200	70	18	194.12
Contraction Contraction	CGHV14250 (CREE)	HEMT (GaN)	2014-2015	0.9-1.8	250	65	17	305.11
	CGHV14500 (CREE)	HEMT (GaN)	2014-2015	0.5-1.8	400	60	16	521.08

CGHV14250

CGHV14500

BLF647P0 LDMOS (Si)- evaluation circuit

@ 1.3GHz CW , Idq: 100 mA , VDS: 32 V

Characteristics	Simulation	Measurement
Power (W)	144	104
Gain (dB)	16.6	14.7
Efficiency (%)	70	55

@ 1.2GHz CW , Idq: 500 mA , VDS: 50 V, $\rm T_{case}$: 50° C

Characteristics	Simulation	Measurement
Power (W)	441	155
Gain (dB)	17.4	12.93
Efficiency (%)	58	36.38

CGHV14500 - HEMT (GaN)- evaluation circuit

Fast sweep over the whole frequency range Sweep time: 450 ms Max output power: 375 W @ 1.3GHz Efficiency: 83%

@ 1.2GHz CW , Idq: 500 mA , VDS: 50 V, $\rm T_{case}$: 65° C

Characteristics	Simulation	Measurement
Power (W)	273	270.4
Gain (dB)	17.3	17.3
Efficiency (%)	69	64.77

21st ESLS-RF Workshop 15 - 16 November 2017

SSA development at ALBA

CGHV14250 HEMT(GaN)- single ended

- Frequency: 1.5 GHz
- Output power: 269 W
- Efficiency: 63%
- Gain: 17dB (at 1dB compression)
- Second Harmonic at -38 dBc
- RL: -13 dB

300 W circulator

- IL< 0.2 dB
- Isolation> 25 dB
- RL > 25 dB

Altıum. Designer

250 W Solid State Power Amplifier module

250 W Solid State Power Amplifier module

Stability test

- Transistor is unstable in almost whole range of frequency based on **S-parameter S2P file & model**
- Very sensitive to bias voltage and T_{case}

instability was seen at VDS: 35 V

PA is unstable from 80-110 MHz without circulator at bias point

PA is stable with circulator in

250 W Solid State Power Amplifier module

Due to Measurement obstacles as:

- Instability
- Lower gain
- Frequency shift
- Thermal issue

Modifications were done :

- output matching capacitors : ATC 600F --> ATC 800B and trimmers
- output dc feed line width
- Parallel resistor for stabilization in the input matching

New Dimension: 94 × 70 sq. mm **Under fabrication**

20 kW Solid State Power Amplifier Combining System

Power divider/combiner for 1 kW power Amplifier Module

Wilkinson power divider/combiner

- Dimension: 100 × 284 sq. mm
- Substrate: RT6035HTC
- Thickness: 18 um
- Height: 1.6 mm

PORT	Freg (GHz)	Insertion loss Amplitude (IL) dB		Insertion loss (IL) Phase		
	. ,	Simulation	Measurement	Simulation	Measurement	
2	1.5	-6.090	-6.374	166.148	-120.675	
3	1.5	-6.136	-6.324	166.398	-119.283	
4	1.5	-6.152	-6.329	165.027	-119.648	
5	1.5	-6.106	-6.260	164.730	-118.496	

	Freq	Return	loss (RL)
PURI	(GHz)	Amp (dB)	phase
1*-2	1.5	-23.18386572	137.1471727
1*-3	1.5	-23.13089724	136.658208
1*-4	1.5	-23.42375501	139.0671877
1*-5	1.5	-23.66775796	139.4849719

1 kW Solid State Power Amplifier module

Next Steps

- Optimization of 250 W module
- Design and build a 1 kW module out of 4 modules (cooling, casing)
- Optimization (amplitude and phase) of the 1 kW module

1 kW Power Amplifier module

THANK YOU FOR YOUR ATTENTION