

Finger exercises for PETRA IV

PETRA III

Main parameters:

I = 2304 m
beam energy = 6.08 GeV
beam current: 100 mA (4.8 E12 e⁻), Top Up
emittance (hor.) = 1 nmrad
energy loss: ca. 5 MeV per turn (ca. 65 % from damping wigglers)
20 undulators
fill pattern:
timing mode : 40 bunches, 192 ns gap

60 bunches, 128 ns gap

continuous mode:

480 bunches, 16 ns gap 960 bunches, 8 ns gap

Going from PETRA III to PETRA IV

- "H7BA"-Lattice with 26 IDs
- In the same tunnel
- Beamlines stay where they are
- 2 new experimental halls

RF-Related PETRA IV Parameters

		remarks
Energy	6.0 GeV	
RF frequency	500 MHz	
Circumference voltage	$6 \text{ MV}_{\text{nom}}$ (9 MV _{max})	Optimized for max. Touschek lifetime. Effect of 3. harm. syst. has not yet been considered
Beam current	200 mA / timing mode 80 mA / brightness mode	
Energy loss per turn	3.32 MeV	IDs included
Energy spread	< 2·10 ⁻³	w/o IBS
Momentum compaction factor	1.43·10 ⁻⁵	About 80 times smaller than PETRA III
Bunch length (1σ)	6.8 ps	
Long. damping time	16.2 ms	

Plans for PETRA IV

- 2 new experimental halls
- complete new preaccelerator chain
- New injection scheme no topup

but swap out part of beam and "on axis injection"

PETRA IV time schedule

Insert new rf- system

RF System PETRA-SR today

Connecting one of the six cavities to a SSA in 4th quarter 2021

DESY.

Development of a 1.5 GHz downscaled BESSY cavity

- ALBA offered DESY to participate (Jan. 2019)
- Cooperation agreement contract set up and sent to ALBA for review (Aug. 2019)

Learning to "play harmonics"

Installation of 2nd harmonic rf system for PETRA III and operating it in a "3 GeV- Testrun"

Why:

- We got all that stuff klystron, cavities, waveguides and space in the machine
- Learning to operate and active harmonic system

Learning to "play harmonics"

Some modes need to be damped => we research the solution

DESY.

Learning to "play harmonics"

2nd Harmonic RF System for PETRA III could be installed in PETRA hall

Tentative schedule:

- Until 2^{nt} quarter 2020: continue CST-MWS simulations, HOM damping measurements
- 3rd quarter 2020: Conditioning and power test of cavities
- 2021: Installation of klystron transmitter in hall PETRA NW
- 2022: Installation of cavities in tunnel PETRA NW
- 2023 shut down: Harmonic system studies in PETRA III

Test transmitter

• Testing cavities, loads, waveguide- components, klystrons

Cavity test bunker

Water leakage at Ferrite-absorbers

Lupe

- We have 60 pcs total, 30 pcs in use. Some build in the late 1990s
- The design of the water flow has been changed several times.
- The separation between flow and return squeezed. Water can flow by.
- Or the separation is done by a disc soldered in.
 - Leakage sensor and water level monitoring to obtain an estimate of whether access is required.

