Status of the ASTRID2 RF systems

Jørgen S. Nielsen Center for Storage Ring Facilities (ISA) Aarhus University Denmark

ASTRID2

- ASTRID2 is the new synchrotron light source in Aarhus, Denmark, since 2013
- ASTRID2 main parameters

Electron energy: 580 MeV

Emittance: 12 nm

Beam Current: 200 mA

Circumference: 45.7 m

6-fold symmetry

- lattice: DBA with 12 combined function dipole magnets
 - Integrated quadrupole gradient
- 4 straight sections for insertion devices
- Using ASTRID as booster (full energy injection)
 - Allows top-up operation

ASTRID2 Layout

ASTRID2 Status

- Normal operation
 - 120 mA continuous TopUp
 - Beam line request
 - 5 beam lines in operation
 - 2 beam lines being installed
- 200 mA TopUp is possible
 - Bumper problem is solved
 - But 30% increase in vertical beam size
- The ASTRID2 ring is quite stable, but we are fighting a little with the ASTRID ring

200 mA during (the nights of) 3 days

14 days of continues beam

ASTRID2 RF

- ▶ 105 MHz (like ASTRID)
- Main RF parameters

• Harmonic: 16

• RF voltage: 50-150 kV

Synchrotron frequency: 10-20 kHz

Synchrotron radiation

~1.4 kW power:

0.5 - 7 kW• Cavity power:

▶ 8 kW solid state amplifier from

ASTRID2 Cavity

- Basically the same as MAX IV cavities
 - Built by RI (RF design by MaxLab)
- ▶ Has been conditioned to ~150 kV (~4 kW)
 - No problems seen, but there is outgassing
- Usual operate at 80 kV (~900 W)
- Have a 315 MHz Landau cavity (also from RI and based on MaxLab design).
 - Installed March 2015

New developments

- ▶ Installed 3rd harmonic (Landau) cavity
 - March 2015
- Solved the bumper problem
 - Allows 200 mA continues TopUp
 - But we still have an beam current depended increase in vertical beam size for beam currents above ~150 mA
 - We believe the reason is (poor) vacuum (needs conditioning)
- New RF power amplifier for ASTRID
 - 1 kW (105 MHz) from Raditek Inc.
 - Solid state (one power amplifier power module)
 - Includes a circulator in a separate box

New ASTRID RF power amp.

- ▶ 1 kW Solid State from Raditek Inc.
 - Replaces the ~25 year old 8 kW tetrode amplifier
- Saves electrical power
 - Idle power consumption:

Tetrode: ~7 kW

Raditek: ~150 W

Amplifier

Circulator

Old amplifier

- Simple design (in-vacuum ferrite)
- First version: Beam current limited to 60 mA
- We believe the problem was due to absorption of beam induced RF fields in the ferrites, causing them to heat above the Curie temperature of 130°C

First version

- Second version:
 - Added shields at the ends and cooling of ground conductor
- Beam current limited to 90 mA!
 - With no cooling water we could achieve 85 mA!

Second version

- Third version:
 - Added Ti-coated ceramic shells inside bumper to shield the ferrites from the beam
 - Allows us to run 200 mA indefinitely
 - Install dates: Aug. 2014, Oct. 2014, March 2015
 - Price: ~4000 € (for the three bumpers)
 - Much cheaper than a system with out-of-vacuum ferrites

Landau cavity

- Installed March 2015
- Prebaked (130°C)
- Preconditioned with 100 W (~20 kV)
 - Multipactoring around 10 W (200 V)

Installed in the ring

Landau cavity

Preliminary:

5.5 h @ 120 mA (Detuned +150 kHz)

Better lifetime

Before: 1.4 h @ 80 mA and 1.0 h @ 120 mA

Now: 2.0 h @ 80 mA and 1.85 h @ 120 mA

More stable beam

- Moved instabilities to frequencies in the (many) MHz range
- SR diagnostic camera (in control room) now shows a stable beam (and happy users)
- Good tuning range is limited
 - $^{\circ}$ Pt. use a detuning of +400 kHz (tuning range is ± 500 kHz).
 - "Theoretical optimum" (flat potential) is +160 kHz
 - Drop in cavity voltage and outgassing 250–300 kHz
 Needs more conditioning?

Longitudinal coupled bunch instability

- We have strong longitudinal coupled instability
- ▶ Mode amplitudes are up to ~0.1 ns
 - 10 ns bunch separation
- Threshold (beam current) is low (a few mA)
- Through dispersion it gives strong horizontal oscillations
 - Clearly visible on our SR diagnostic camera (with short exposure time)
 - Dispersion = 0.18 m

Longitudinal coupled bunch instability

- All bunch positions can be found by finding all zero crossings
 - We can follow the oscillation of each bunch

Longitudinal coupled bunch instability

- Landau cavity is damping the instability a little, but is changing which modes are the strongest
 - We can find a Landau detuning where the beam appears stable on our diagnostic camera
 - We are mowing the oscillations higher up in frequency (where they are less apparent)

Before Landau cavity (24 mA) Dominant mode: 9

With Landau cavity (120 mA)

Dominant mode: 15

Thank you for your attention

Landau cavity scan (@150 mA)

JS

ASTRIDX LLRF

- Since January 2011: New LLRF in operation at ASTRID
 - Same system for ASTRID and ASTRID2 (except for different tuning control)
- Digital control of baseband signals
 - A computer (PC) running LabVIEW Real-Time with FPGA equipped multifunction card to measure and control the baseband signals
 - NI PCIe-7852R:
 - Virtex 5 FPGA, 8 AI, 750 kS/s/ch, 8 AO, 1 MS/s/ch, 16 bit
 - Detection: IQ demodulators with low pass filter
 - $\pm 180^{\circ}$ phase detection
 - Control: Amplitude and Phase (voltage controlled)
- FPGA (Amplitude Loop): No problems at all
- Real-time (Tuning Loop and Phase Loop): A few restarts have been necessary (data acquisition loop stops)
- Very happy with the systems

Coupled bunch instability 3

The oscillations can be decomposed into

