

High Power RF Sources for the ESS RF Systems

Morten Jensen

www.europeanspallationsource.se ESLS RF, 1 October 2015

First bit of the RF Gallery

ESS accelerator power profile

Average beam power: 5 MW > 130 MW peak 36 Medium beta cavities: Pulse repetition rate: 14 Hz 704 MHz 26 spoke Beam pulse length: 2.86 ms 1.5 MW Klystrons cavities: 352 MHz **Normal-conducting Linac:** Tetrødes 1.20E+03 One RFQ and 5 DTL tanks 1.00E+03 6 off 352 MHz klystrons 3 MW 8.00E+02 84 High beta cavities: **3** Solid state amplifiers for 704 MHz 4,00E+02 **bunchers** 1.2 MW MB IOTs 352 MHz, 30 kW 2,00E+02 (klystrons as backup) 0,00E+00 0 20 80 140 40 60 100 120 160 Coupler Number

Normal conducting linac

EUROPEAN SPALLATION SOURCE

CPI VKP-

8352A

Output vs Voltage

Frequency	352 MHz
RF Power	3 MW peak
High voltage	to 115 kV
Current	to 50 A
Repetition Rate	14 Hz
Pulse width	3.5 ms

In-kind from ESS Bilbao

Medium beta linac

Frequency	704 MHz
Power	1.5 MW peak
High voltage	to 115 kV
Current	To 25 A
Repetition Rate	14 Hz
Pulse width	3.5 ms

High Power Density: 12 MW of RF in approx. 10 x 13 m

Four klystrons per modulator

- Three prototypes on order: Thales, Toshiba and CPI
- Design reviews complete
- Delivery expected in March (Thales), May (Toshiba) and July (CPI) 2016

Vertical orientation to fit in the gallery

Klystrons

Courtesy of Chiara Marrelli

Modulators

704 MHz klystron prototypes

704 MHz klystron prototypes

EUROPEAN SPALLATION SOURCE

(a) V_b = 110 kV

Courtesy of Chiara Marrelli

Distribution: Waveguide, coax, circulators and RF loads

Courtesy of **R** Yogi

EUROPEAN SPALLATION SOURCE

ESS needs several kilometers of waveguide and thousands of elbows

- Simple to design
- Detailed manufacturing drawings allow manufacture by variety of companies
- Potential of significant cost saving

First waveguide prototypes received from two companies

- Contracts signed for prototypes for 704 MHz circulators and loads
 - Circulators: AFT, FMT and MEGA
 - $\circ~$ Loads: AFT, Thales and MEGA

EUROPEAN SPALLATION SOURCE

Local Protection System - Interlocks

Multi-Beam IOTs for ESS

communications

EUROPEAN SPALLATION SOURCE

THALES

Two prototypes on order for Delivery in 2016

L3 Design Review Complete

Thales/CPI Design Review in November

microwave power products division

Specification

EUROPEAN SPALLATION SOURCE

Parameter		Comment
Frequency	704.42 MHz	Bandwidth > +/- 0.5 MHz
Maximum Power	1.2 MW	Average power during the pulse
RF Pulse length	Up to 3.5 ms	Beam pulse 2.86 ms
Duty factor	Up to 5%	Pulse rep. frequency fixed to 14 Hz
Efficiency	Target > 65%	
High Voltage	Low	< 50 kV
Design Lifetime	> 50,000 hrs	

Target: Approval for ESS series production in 2017/18

Efficiency comparison of Klystrons and IOTs

EUROPEAN SPALLATION SOURCE

- Klystron assumed to have same saturated efficiency as the IOT
- No optimisation of coupling, voltages, perveance for different power levels

IOT measurements courtesy of M. Boyle, L3

- Based on broadcast IOT L-4444
- System setup limited by drive power and beam voltage
- IOT setup for maximum gain (not efficiency) without breakdown
- No optimisation of coupling, grid voltages etc. for different power levels

Both designs largely based on the broadcast design

- 10 beams:
 - 10 electron guns placed in a circle
 - Separate grids and cathodes
- Single output cavity, with centre feed
- 10 individual collectors instead of a single large collector
- Coaxial output

Information is still very commercially sensitive

Output Cavity and DC Beam Studies Courtesy of L3 Communications

- Output cavity supports a large number of modes
- HFSS used to map modes near harmonics of the drive frequency

Single beam demonstrator

EUROPEAN SPALLATION SOURCE

Single Beam IOT

- Single beam output cavity
- Scales output window

Gun Test Vehicle

Single Beam Prototype IOT Test Results

Magic-2D Simulation

Work still ongoing to optimise optics and beam transport

Output Cavity

Collectors

EUROPEAN SPALLATION SOURCE

• 10 individual collectors

Operational Optimisations Courtesy of L3 Communications

EUROPEAN SPALLATION SOURCE

2

Increased beam voltage provides for better performance

- Increases gain
- Increases efficiency
- Decreases body current

MAGIC Prediction of MB-IOT Performance Courtesy of Thales and CPI

Power Transfer Curve

MAGIC-3D simulation of one beam with MB-IOT offaxis B-field

Integration Test Stand

Integration test stand being prepared

- First setup will be with CERN modulator and klystron
- Spring/summer 2016 test with ESS modulator and klystron prototypes

EUROPEAN SPALLATION

SOURCE

Thanks to RF Group for help with the presentation

To Chiara Marrelli, Rafael Montano and Rutambhara Yogi for slides

L3 and Thales/CPI for permission to publish some of the results and design details