The RF of PETRA IV

Stefan Wilke, DESY MHF-e 25th ESLS rf meeting Hamburg, 8th/9th nov 2021

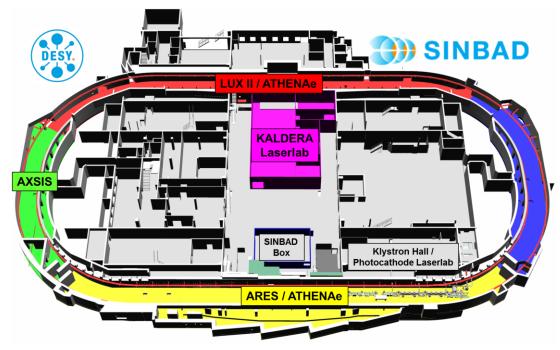
We miss him so much.

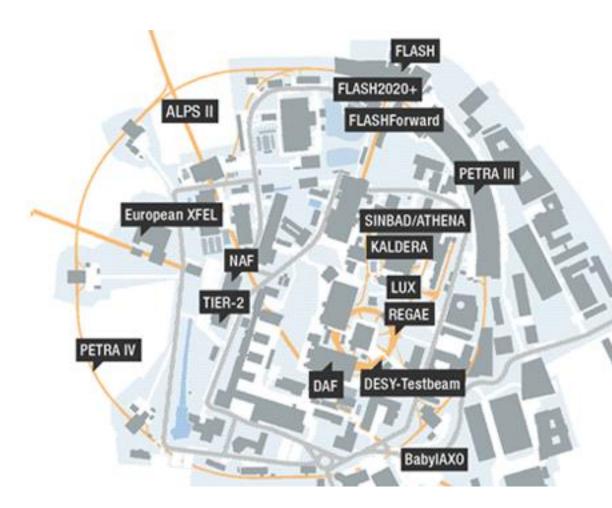
Michael Ebert (+ 2021-03-06)

The RF of PETRA IV.

Overview

- Lots of activities at DESY
- Short view on the present RF-system at P3

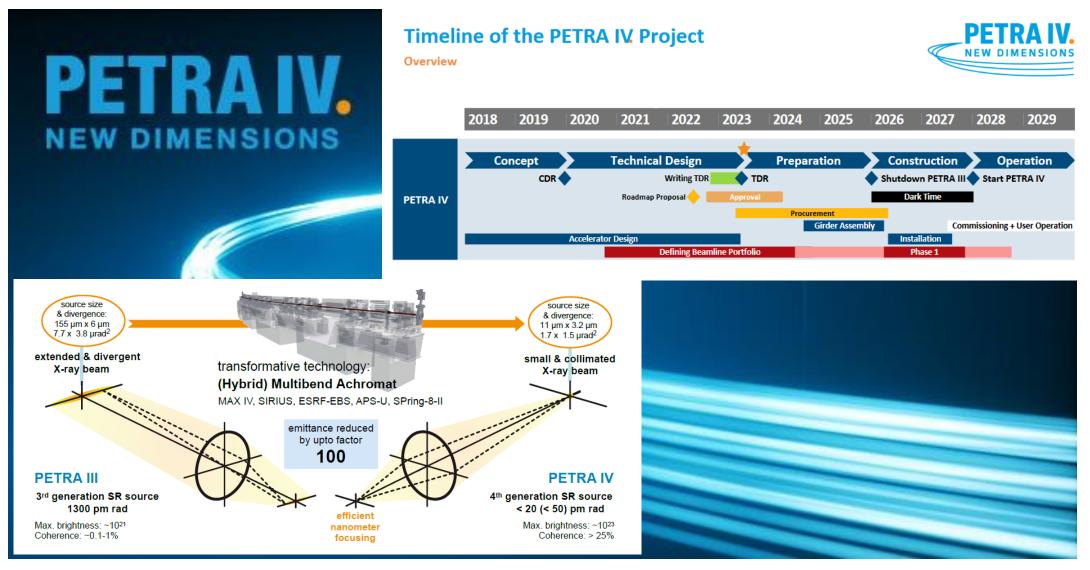

- CDR P4


- main parameter of the machine
- RF parameter
- active 3rd harmonic RF
- RF at DESY IV
- Tests of P4 RF components in P3

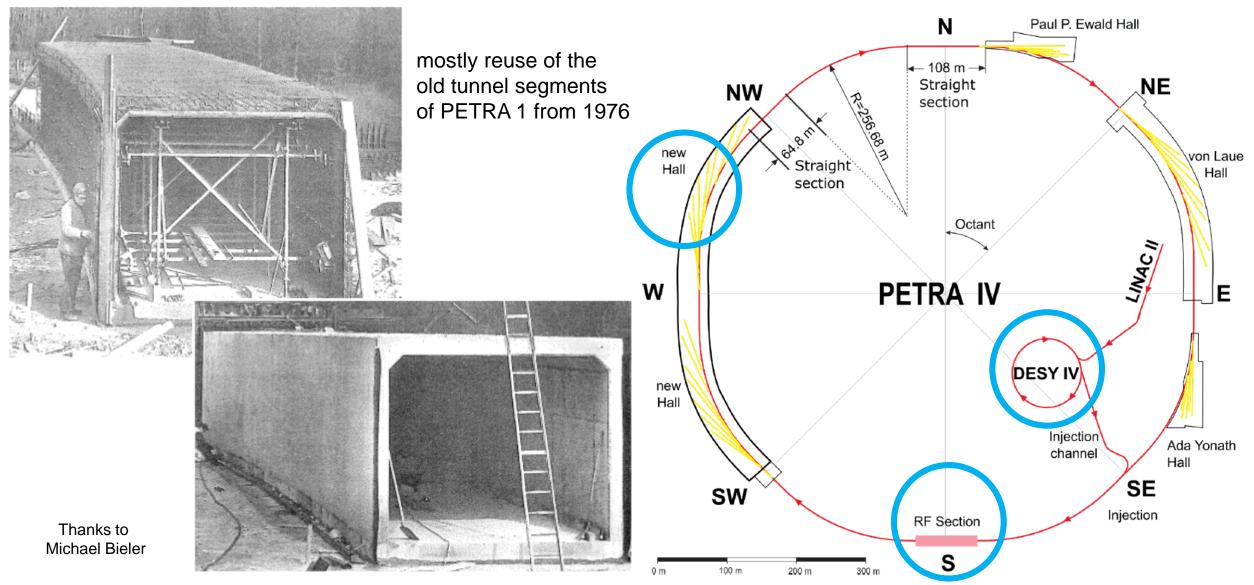
Lots of activities at DESY.

Some major competitions to PETRA IV

- 24/7 operating of XFEL, PETRA3, DESY2, FLASH
- FLASH2020+: new undulators, new rf-modules Operation from 2025
- KALDERA: A high-power laser for plasma accelerators. Operation from 2026



The existing RF system. One half of the current PETRA III rf system


PETRA III 6.0 dB 6.99 dB 8.0 dB Abs 1 Abs 5 Abs 4 Abs 3 Abs 2 VL/RL Ld Pwr VL/RL Cy Pwr VL/RL Ld Pwr VL/RL Cy Pwr VL/RL Ld Pwr VL/RL **RF** parameters tunnel U 6Z2 U 6C U 6Z6 U 5Z2 11 576 U 4Z2 U 4C U 4Z6 U 3Z2 U 3C U 3Z6 U 2Z2 U 2C U 2Z6 U 1Z2 U 1C U 1Z6 frequency: Cavity 6 ELWIS Cavity 5 ELWIS Cavity 4 ELWIS Cavity 3 ELWIS Cavity 2 ELWIS Cavity 1 ELWIS 499.664 MHz transmission line to the other side harmonic number: Transmitter Hall 3840 ++ . Filament-PS 8Ω Transmission-Line ELWIS Modulator-PS 20 MV cavity voltage Pos 2 Waveguide Pos 3 •€ Modulator 1 ELWIS Electronic Klystron 1 ELWIS 12×7 cell nc cavities Room WGS2 TrLn Pw Control ELWIS VL/RL Outdoor Installation ÝI /RI Modulator Room (Transformer. RF power: Abs 08 Rectifier) Crowba ocks, , IrCa-Control Loops, Signal Conditioning ar igntion Module, Operation Panel, ol ELW/S, Ref. Frequency up to 4×800 kW Transmitter ELWIS *** 20 Waveguide RK 04 Ld Pwr RK 03 -75kVnr (2 Thales and ΣKly Pwr ▲ VL/RL ▲ RK 09 WG S1 VL/RL A Pers.-Intk Syst 182 20 Ω 7 μF Abs 04 Circulator 2 Philips klystrons) FI WIS: Ld Pw VL/RL Interlock LLRF, I/ Crowbar Control E Abs 05 Abs 06 modular control system S2-17 (S1-7) S2-18 (S1-8) S2-19 (S-9): 1 Modulator 2 ELWIS based on PXI crates Klystron 2 ELWIS (Windows, LabVIEW, TINE) ++ lament_P 8Ω Modulator-PS

PETRA IV.

The future from 2028

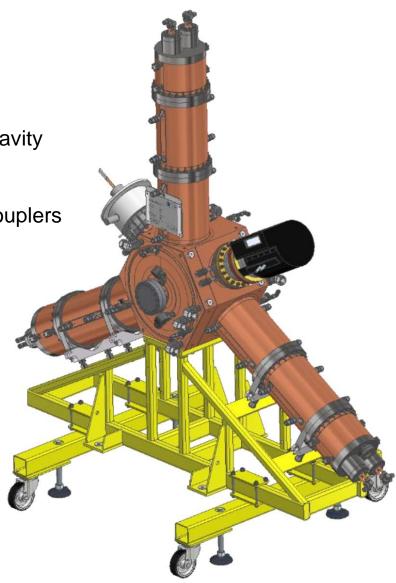
PETRA III vs PETRA IV.

Some main parameters in comparison.

	PETRA III	PETRA IV (CDR)		
Energy / GeV	6.08	6.08 Brightness M Bunch	h train 1	Bunch 21
Circumference / m	2304	2304		96
Revolution frequency / kHz	130.121	130.121	<u>۲</u>	2
Beam lines	26	30		
Number of bunches (timing-, brightness mode)	40, 480	80, 1600		
Beam current / mA	100, 120	80, 200		
Bunch current / mA	2.5, 0.25	1, 0.125		
Emittance (hor./vert.) / pm rad	1300 / 10	<50 / 10, <20 / 4		
Energy loss (ID closed) / MeV per turn	5	4.024		
Momentum comp. factor	0.001127	0.00001485		
RF voltage / MV	20	8 + 2.4		
Synchrotron frequency / kHz	6	0.421		
RF frequencies / MHz	499.6	499.6 + 1500		
Harmonic number	3840	3840		

PETRA IV RF.

fundamental


Parameters for the PETRA IV fundamental RF system:

Main (fundamental) RF frequency	499.65 MHz	
Total voltage main RF	8 MV	$\langle =$
RF voltage per cavity	476 kV	
Transit Time Factor	0.7	
RF voltage per cavity seen by the electrons	333 kV	\leftarrow
Cavity wall loss	16.3 kW	
Quality factor (unloaded)	29600	
Cavity coupling factor	3.0	
Shunt impedance $R_s = V^2/(2P)$	3.4 MΩ	
Loaded quality factor	7400	
Number of main RF cavities	24	\leftarrow
Synchronous phase	30.2°	
Synchrotron frequency	421 Hz	
Total wall loss in cavities	392 kW	
Total beam loading power	800 kW	
Nominal transmitter power per RF station	110 kW	\leftarrow
Beam tube aperture	74 mm	
Length of cavity (flange to flange)	500 mm	

500 MHz single cell nc cavity HOM damped

reuse of plungers and couplers

see presentation ,Plunger Refurbishment' (Nils-Oliver Fröhlich)

two frequencies.

lengthen the bunch with a second active RF-system

Bunch length:

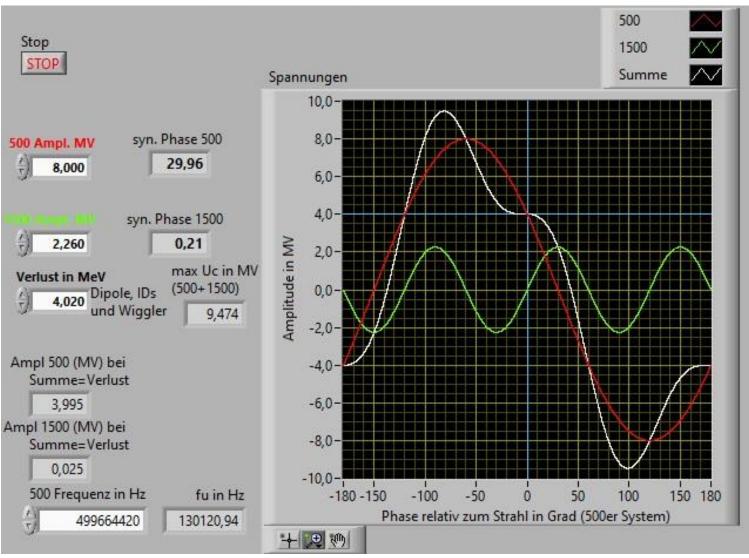
corrected: 23 ps (7 mm) corrected:

2

- without a 2nd RF-system: 5 ps (1.5 mm)

60 ps (18 mm) - with an additional RF-system (3rd harmonic): 65 ps (ca. 20 mm) So the single bunch current could be increased

The required harmonic RF voltage for a flat potential at the bunch transition is


$$V_{HHC_{opt}} = Vr_f \sqrt{\frac{1}{n^2} - \frac{1}{n^2 - 1} * \left(\frac{U_0}{qe Vrf}\right)}$$

n: order of the harmonic (PETRA IV: 3)

 U_0 : energy loss per turn (4.0 MeV)

 V_{rf} : voltage of the fundamental RF system (8.0 MV) q_{e} : elementary charge (1.602 * 10⁻¹⁹ C)

This gives an optimum value for the harmonic voltage of $V_{HHC.opt.} = 2.26 \text{ MV.}$ With some safety margin, the system is designed for $V_{HHC} = 2.4$ MV.

PETRA IV RF.

third-harmonic

Parameters for the PETRA IV third-harmonic RF system:

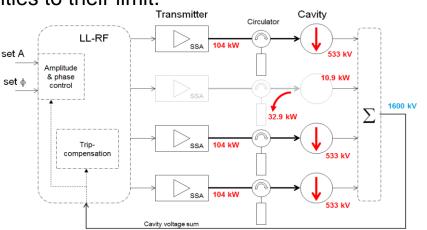
3rd harmonic RF frequency	1498.995 MHz
Total RF voltage	2.4 MV 🤇 🔤
RF voltage per cavity	100 kV 🤇 🔤
Cavity wall loss	3.3 kW
Quality factor (unloaded)	17000
Loaded quality factor	2700
Total wall loss in cavities	71 kW
Cavity coupling factor	5.3
Shunt impedance R _s =V ² /(2P)	1.5 MΩ
Number of RF stations (cavity/SSA)	24 🧲
Nominal transmitter power per RF station	10 kW 🤇 🗔
Beam tube aperture	46 mm
Length of cavity (flange to flange)	313.6 mm

Collaboration ALBA/HZB/DESY

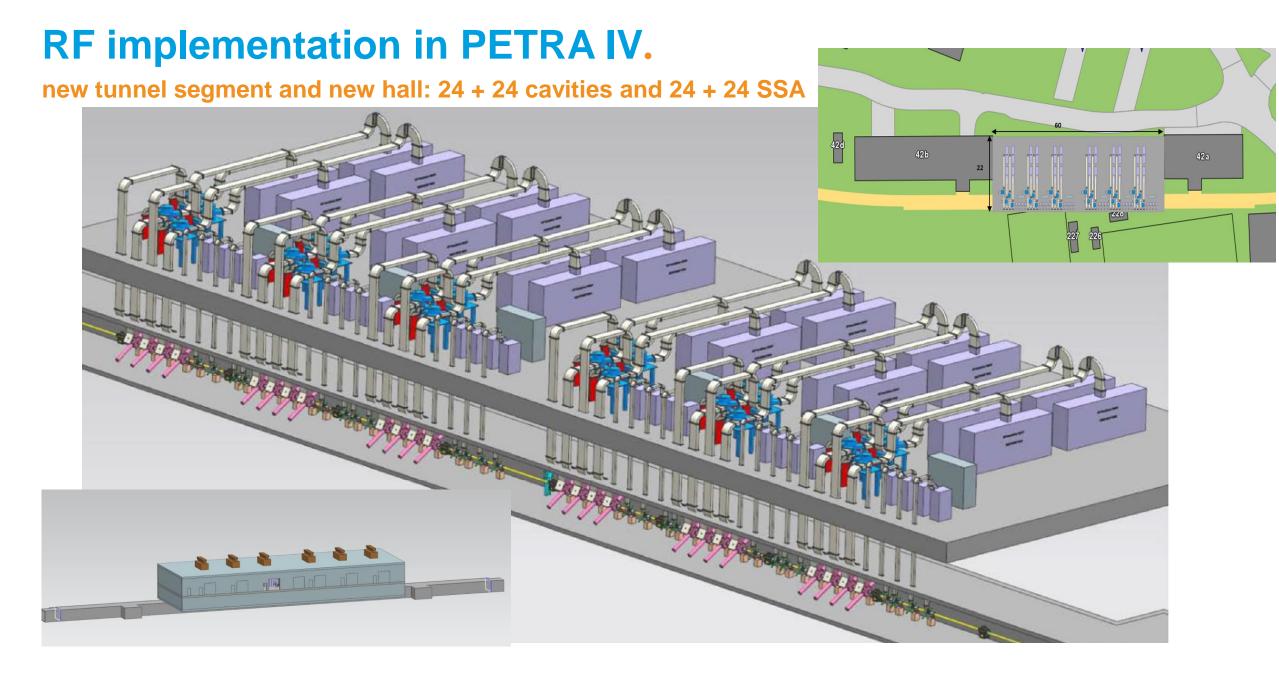
Development of a 3rd harmonic HOM damped cavity 1/3 scaled and optimize from 500 MHz see presentation tomorrow (Jesús Ocampo)

In addition there are some ideas of alternatives see presentation of Peter Hülsmann

RF System Design.


Each of the 24 cavities is powered by its own Solid State Amplifier (SSA) and we want to control them in 6 groups of 4 pairs of cavity/SSA.

Cavity Voltage and power at SSA Circulator nominal operatio LL-RF set A Amplitude & phase set ϕ control 1.33 MV Tripnormal operation: compensation by FB Power per Cavity: or FFwd Pdiss = 17 kW 333 kV Pbeam = 33 kW ⇒ Pcoupler = 50 kW Cavity voltage sur

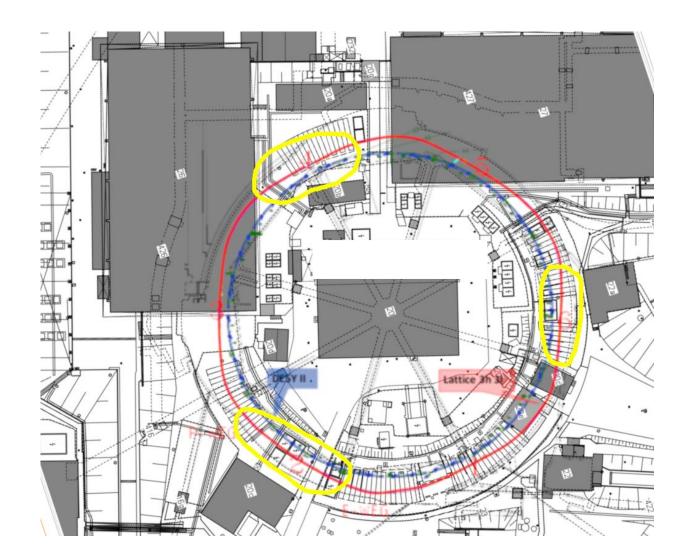

<u>A worst case scenario (200 mA beam current)</u>: Only 5 of the 6 systems (each a group of 4 SSA/Cav) running and in addition a failure of one sub-system (SSA/Cav). This brings the cavities to their limit.

μTCA crate More details see presentations tomorrow (Frank Maschewski, Arvid Eislage)

DESY. | The RF of PETRA IV | Stefan Wilke, 25th ESLS rf-meeting Hamburg 8th/9th nov 2021

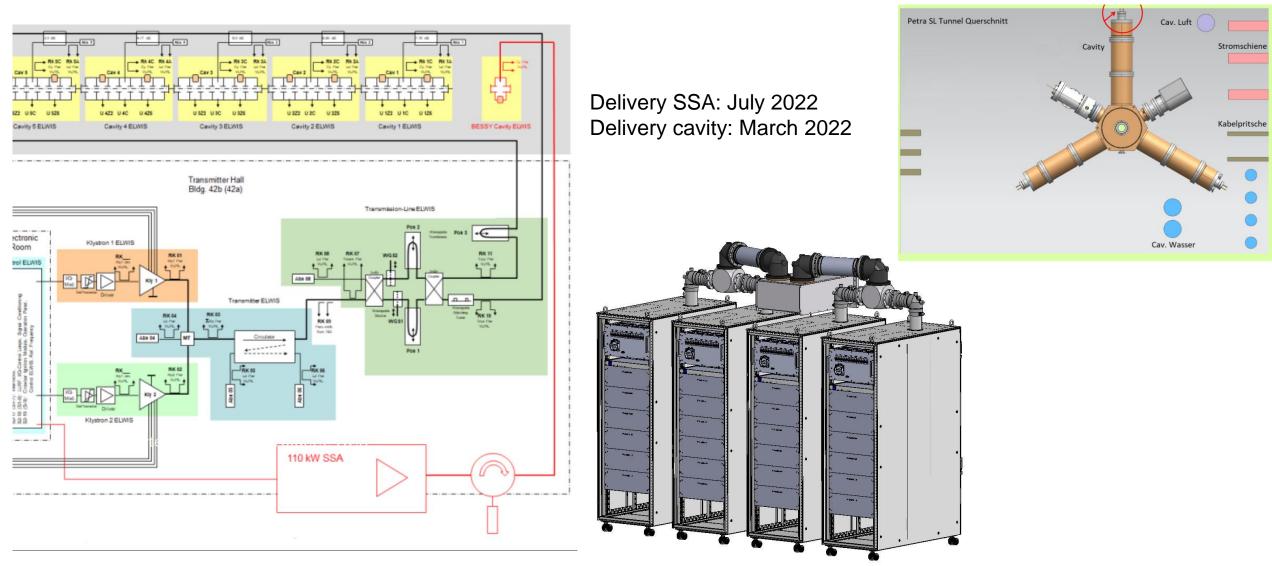
DESY IV.

Booster parameters: Circumference: 316.8 m Harmonic number: 528 Repetition rate: 2 Hz to 5 Hz Momentum compaction: 3.30 × 10-3


Beam energy at6 GeV700 MeVEnergy loss per turn4.04 MeV0.748 keV

A new machine (DESY IV) in the same tunnel as the existing and remaining DESY II.

RF:


9 (grouped in 3 locations) 5-cell 500 MHz nc cavities each powered by a SSAs

Frequency	499.65 MHz
Total RF voltage	12 MV
RF voltage per cavity	1.3 MV
Cavity wall loss	59 kW
Quality factor (unloaded)	29500
Cavity coupling factor	nyd
Shunt impedance R _s =V ² /(2P)	15 MΩ
Number of RF 5-cell cavities	9
Beam tube aperture	120 mm
Cavity length (flange to flange)	1800 mm

Tests of P4 RF components in P3.

One prototype SSA and one prototype HOM damped 500 MHz single cell cavity

Thank you for lending your ears.

Additions or questions?

Sailing vessel (four-masted barque) "Peking" back in Hamburg 2020-09-07

Contact

DESY. DeutschesStElektronen-SynchrotronDIst

www.desy.de

Stefan Wilke DESY, MHF-e stefan.wilke@desy.de 049/40/8998-1836