

ANKA RF System - Upgrade Strategies

Vitali Judin

ANKA Synchrotron Radiation Facility

2014 - 09 - 17

KIT – University of the State Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

ANKA Storage Ring at KIT

Key parameters ANKA:

circumference: 110.4 m revolution time: ≈ 368 ns harmonic number: 184

Schematic taken from 'Proceedings of the 1999 Particle Accelerator Conference, New York, 1999'

۰÷.

Elettra type cavities

- Shunt impedance: ~3.3 MOhm
- designed max voltage: 650 kV
- max. ramping 5 kV/s
- Power loss in cavity: <64 kW</p>
- Tuning: via deformation, DC motor
- Water cooled cavity and coupler
- Air cooled coupler window

Coupler window cleaning

- occasionally interlocks on outlet air temperature due to the high gap voltage in SUO studies
- Air-outlet: S2 26°C S4 29°C, Interlock: 35°C
- Assumption: deposition on ceramic window
- Exchange of experience with SLS:
 - mechanical cleaning of ceramic surface using the industrial 3M Scotch Brite
- Cleaning in January' 14: 1-2h per Cavity

Coupler window cleaning

- occasionally interlocks on outlet air temperature due to the high gap voltage in SUO studies
- Air-outlet: S2 26°C S4 29°C, Interlock: 35°C
- Assumption: deposition on ceramic window
- Exchange of experience with SLS:
 - mechanical cleaning of ceramic surface using the industrial 3M Scotch Brite
- Cleaning in January' 14: 1-2h per Cavity

Coupler window cleaning result

- Very high refl. power on one cavity
 - few hours of "waveguide Tetris" until the source was found
 - wrong tuning behaviour of the LLRF -> wrong signal level on feedback loop
 - mechanical pressure on the frequency loop pick-up coax connector
- Consequence:
 - we could observe spark imprints on copper surface of the waveguide-to-coax connector
 not critical.
 - we have nice clean ceramic windows
 - stocktaking of waveguide parts
 - good margin to interlock value
- Future tendency: higher synchrotron radiation due to damping insertion devices at ANKA
 - higher forward power needed

possible long term solution?

A. Fabris et al., WEPMN016, PAC07

Cooling Rack - Water Flow Rate

- Flow rate of primary cooling circuit is decreasing slowly in time
 - change of PID behaviour
 - temperature oscillations also in secondary circuit
 - reduction of acceptable ramping rate (kV/s)
 - crossing HOM e.g. during ramping

Cooling Rack - Water Flow Rate

- Disturbed PID regulator due to energy ramping oscillates
- critical for special user operation in low alpha mode -> change of peak voltage
 -> change of bunch length -> change of THz radiation/bursting behaviour

Karlsruhe Institute o

BBB Longitudinal Kicker

ANKA

- Initial BESSY/DELTA design
- tapers to ANKA beam pipe profile
- additional copper absorber
- suitable broad band amplifier:
 - → ~200W 1.0-2.0 GHz
 - e.g. MILMEGA AS0102

installation planned for the end of the year

ANKA

Klystron Service

- Sudden beam losses occured
- RF drive reflected power increased:
 - maintenance of klystron was performed
 - replacement of RF cable inside of lead cover was done
 - Iast replacement 2011: wrong material

radiation hardness of dielectric material is important issue

Spare Klystron

ANK

- life time of klystrons is long but not endless
- spare klystron for ANKA is on stock, but:
 - is it operable? what is the on-stock lifetime?
 - vacuum is maintained, but not the heater
- 500 MHz klystron refurbishment could be issue in the next future

DIMTEL LLRF Test at ANKA

- 1st experience exchange with ELSA
- station S4 was chosen for the test
- constrain:
 - 1 day MP scheduled
 - minimal invasive setup
- full installation within 2 hours
- tuner controllability was realised by workaround via EPICS2ACS
- Test passed:
 - general functionality
 - open loop / closed loop
 - rf ramp up/down
 - soft interlocks + diagnostics
 - 100mA beam + ramping to 2.5 GeV only 6h after installation (!)

2x CavFWD, 2x CavREF, 2x CavPick-Up interlock daisy chain (TTL), 1x Drive out 3 inputs and 3 outputs leaved free,

DIMTEL LLRF Test at ANKA - Results

ANK

- Closed loop transfer function
 - Measured from set point to error signal
 - quantify disturbance rejection
- proportional and integrator loops produce high rejection at low frequencies
- closed-loop disturbance rejection
 - beam response at 30 kHz
 - -70 dB rejection at ~30 Hz
 - -15 dB rejection at 10 kHz

courtesy of D. Teytelman (priv. comm.) <u>http://www.dimtel.com/products/llrf9</u>

ANK

DIMTEL LLRF Test at ANKA - Results

- post-mortem analysis
- manually detuned cavity 2 to reach reflected power interlock (20kW)
- RF drive switched of within 100ns
- Reflected power rise up shortly
- Field decay transients can be used for calculating of Q and detuning:

Parameter	Cav. 1	Cav. 2
Detuning, kHz	-3.8	-29.4
Loaded Q	11375	10630

courtesy of D. Teytelman (priv. comm.) <u>http://www.dimtel.com/products/llrf9</u>

Decision: LLRF Upgrade

- analog LLRF becomes outdated
 - limited diagnostics
 - no post-mortem analysis
 - control system migration
 - fixed beam phase
 - new fast-interlock needed
- future oriented strategy
 - DLLRF with EPICS integration
 - old racks should be removed
 - free place for SSA
- tuner modifications needed:
 - new digital motor controller
 - new optical encoder

tender is in preparation

Summary

- The upgrade policy over the last few years has provided more reliability of the ANKA RF system in general.
- New DLLRF with full EPICS integration should allow the continuous monitoring of a number of important RF parameters and furthermore perform the post-mortem analysis.
- Longitudinal BBB should give additional freedom in cavity temperature working point and improve injection rate.
- As intermediate step to SSA: the health of the spare klystron should be guaranteed.

Thank you!

